Pathoadaptive Mutations That Enhance Virulence: Genetic Organization of the cadA Regions of Shigella spp

Author:

Day William A.1,Fernández Reinaldo E.1,Maurelli Anthony T.1

Affiliation:

1. Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814-4799

Abstract

ABSTRACT Pathoadaptive mutations improve the fitness of pathogenic species by modification of traits that interfere with factors (virulence and ancestral) required for survival in host tissues. A demonstrated pathoadaptive mutation is the loss of lysine decarboxylase (LDC) expression in Shigella species that have evolved from LDC-expressing Escherichia coli . Previous studies demonstrated that the product of LDC activity, cadaverine, blocks the action of Shigella enterotoxins and that the gene encoding LDC, cadA , was abolished by large chromosomal deletions in each Shigella species. To better understand the nature and evolution of these pathoadaptive mutations, remnants of the cad region were sequenced from the four Shigella species. These analyses reveal novel gene arrangements in this region of the pathogens' chromosomes. Insertion sequences, a phage genome, and/or loci from different positions on the ancestral E. coli chromosome displaced the cadA locus to form distinct genetic linkages that are unique to each Shigella species. Hybridization studies, using an E. coli K-12 microarray, indicated that the genes displaced to form the novel linkages still remain in the Shigella genomes. None of these novel gene arrangements were observed in representatives of all E. coli phylogenies. Collectively, these observations indicate that inactivation of the cadA antivirulence gene occurred independently in each Shigella species. The convergent evolution of these pathoadaptive mutations demonstrates that, following evolution from commensal E. coli , strong pressures in host tissues selected Shigella clones with increased fitness and virulence through the loss of an ancestral trait (LDC). These observations strongly support the role of pathoadaptive mutation as an important pathway in the evolution of pathogenic organisms.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Cited by 122 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3