Intracellular Induction of the Bartonella henselae virB Operon by Human Endothelial Cells

Author:

Schmiederer Michael1,Arcenas Rodney12,Widen Raymond12,Valkov Nikola3,Anderson Burt1

Affiliation:

1. Department of Medical Microbiology and Immunology, College of Medicine, University of South Florida,1 and

2. Department of Clinical Immunology, Tampa General Hospital, Tampa, Florida 336062

3. H. Lee Moffitt Cancer Center,3 Tampa, Florida 33612, and

Abstract

ABSTRACT One of the more recently identified bacterial exportation systems is the type IV secretion mechanism, which is characterized by a multiprotein complex that spans the inner and outer bacterial membranes and contains a pilin component. The most thoroughly studied type IV secretion system is encoded by the virB operon of Agrobacterium tumefaciens . In Bartonella henselae, 8 of the 10 virB operon genes share extensive homology and arrangement with the virB operon of A. tumefaciens . Sequencing of the region upstream of the B. henselae virB2 gene revealed a region with sequence homology to the vir box of A. tumefaciens. This possible promoter region was cloned upstream of the green fluorescent protein reporter gene in the promoterless vector pANT3 and used to transform B. henselae. Minimal reporter gene expression was seen in the transformed bacteria cultivated in the absence of host cells, but expression was strongly induced in intracellular bacteria cultivated with human microvascular endothelial cells. Deletion of an 87-bp fragment, which contained the putative vir box from the 5′ end of the promoter region, diminished intracellular induction of the reporter gene. Host cell induction of the 17-kDa antigen gene, which replaces virB5 in B. henselae , was also demonstrated at the protein level using specific antiserum. Thus, expression of the virB genes of B. henselae is induced in bacteria, which have invaded host cells, through a mechanism that may be similar to the environment-sensing mechanism found in the virB operon of A. tumefaciens .

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3