Neospora caninum Microneme Protein NcMIC3: Secretion, Subcellular Localization, and Functional Involvement in Host Cell Interaction

Author:

Naguleswaran Arunasalam1,Cannas Angela1,Keller Nadine1,Vonlaufen Nathalie1,Schares Gereon2,Conraths Franz J.2,Björkman Camilla3,Hemphill Andrew1

Affiliation:

1. Institute of Parasitology, University of Berne, CH-3012 Bern, Switzerland1;

2. Federal Research Centre for Virus Diseases of Animals, D-16868 Wusterhausen, Germany2; and

3. Swedish University of Agricultural Sciences, Ruminant Medicine and Veterinary Epidemiology, Uppsala, Sweden3

Abstract

ABSTRACT In apicomplexan parasites, host cell adhesion and subsequent invasion involve the sequential release of molecules originating from secretory organelles named micronemes, rhoptries, and dense granules. Microneme proteins have been shown to be released at the onset of the initial contact between the parasite and the host cell and thus mediate and establish the physical interaction between the parasite and the host cell surface. This interaction most likely involves adhesive domains found within the polypeptide sequences of most microneme proteins identified to date. NcMIC3 is a microneme-associated protein found in Neospora caninum tachyzoites and bradyzoites, and a large portion of this protein is comprised of a stretch of four consecutive epidermal growth factor (EGF)-like domains. We determined the subcellular localization of NcMIC3 prior to and following host cell invasion and found that NcMIC3 was secreted onto the tachyzoite surface immediately following host cell lysis in a temperature-dependent manner. Surface-exposed NcMIC3 could be detected up to 2 to 3 h following host cell invasion, and at later time points the distribution of the protein was again restricted to the micronemes. In vitro secretion assays using purified tachyzoites showed that following secretion onto the surface, NcMIC3 was largely translocated towards the posterior end of the parasite, employing a mechanism which requires a functional actin microfilament system. Following this, the protein remained bound to the parasite surface, since it could not be detected in a soluble form in respective culture supernatants. Secretion of NcMIC3 onto the surface resulted in an outward exposure of the EGF-like domains and coincided with an increased capacity of N. caninum tachyzoites to adhere to Vero cell monolayers in vitro, a capacity which could be inhibited by addition of antibodies directed against the EGF-like domains. NcMIC3 is a prominent component of Triton X-100 lysates of tachyzoites, and cosedimentation assays employing prefixed Vero cells showed that the protein binds to the Vero cell surface. In addition, the EGF-like domains, expressed as recombinant proteins in Escherichia coli , also interacted with the Vero cell surface, while binding of NcSRS2 and NcSAG1, the major immunodominant surface antigens, was not as efficient. Our data are indicative of a functional role of NcMIC3 in host cell infection.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3