Defining the Order in Which Nmd3p and Rpl10p Load onto Nascent 60S Ribosomal Subunits

Author:

West Matthew1,Hedges John B.1,Chen Anthony1,Johnson Arlen W.1

Affiliation:

1. Section of Molecular Genetics and Microbiology and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712

Abstract

ABSTRACT The large ribosomal subunit protein Rpl10p is required for subunit joining and 60S export in yeast. We have recently shown that Rpl10p as well as the cytoplasmic GTPase Lsg1p are required for releasing the 60S nuclear export adapter Nmd3p from subunits in the cytoplasm. Here, we more directly address the order of Nmd3p and Rpl10p recruitment to the subunit. We show that Nmd3p can bind subunits in the absence of Rpl10p. In addition, we examined the basis of the previously reported dominant negative growth phenotype caused by overexpression of C-terminally truncated Rpl10p and found that these Rpl10p fragments are not incorporated into subunits in the nucleus but instead sequester the WD-repeat protein Sqt1p. Sqt1p is an Rpl10p binding protein that is proposed to facilitate loading of Rpl10p into the 60S subunit. Although Sqt1p normally only transiently binds 60S subunits, the levels of Sqt1p that can be coimmunoprecipitated by the 60S-associated GTPase Lsg1p are significantly increased by a dominant mutation in the Walker A motif of Lsg1p. This mutant Lsg1 protein also leads to increased levels of Sqt1p in complexes that are coimmunoprecipitated with Nmd3p. Furthermore, the dominant LSG1 mutant also traps a mutant Rpl10 protein that does not normally bind stably to the subunit. These results support the idea that Sqt1p loads Rpl10p onto the Nmd3p-bound subunit after export to the cytoplasm and that Rpl10p loading involves the GTPase Lsg1p.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 108 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3