Combinatorial Regulation of fmgD by MrpC2 and FruA during Myxococcus xanthus Development

Author:

Lee Jun-seok1,Son Bongjun1,Viswanathan Poorna1,Luethy Paul M.1,Kroos Lee1

Affiliation:

1. Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824

Abstract

ABSTRACT Upon starvation, a dense population of rod-shaped Myxococcus xanthus bacteria coordinate their movements to construct mounds in which some of the cells differentiate to spherical spores. During this process of fruiting body formation, short-range C-signaling between cells regulates their movements and the expression of genes important for sporulation. C-signaling activates FruA, a transcription factor that binds cooperatively with another transcription factor, MrpC2, upstream of the fmgA and fmgBC promoters, activating transcription. We have found that a third C-signal-dependent gene, herein named fmgD , is subject to combinatorial control by FruA and MrpC2. The two proteins appear to bind cooperatively upstream of the fmgD promoter and activate transcription. FruA binds proximal to the fmgD promoter, as in the fmgBC promoter region, whereas MrpC2 binds proximal to the fmgA promoter. A novel feature of the fmgD promoter region is the presence of a second MrpC2 binding site partially overlapping the promoter and therefore likely to mediate repression. The downstream MrpC2 site appears to overlap the FruA site, so the two transcription factors may compete for binding, which in both cases appears to be cooperative with MrpC2 at the upstream site. We propose that binding of MrpC2 to the downstream site represses fmgD transcription until C-signaling causes the concentration of active FruA to increase sufficiently to outcompete the downstream MrpC2 for cooperative binding with the upstream MrpC2. This would explain why fmgD transcription begins later during development and is more dependent on C-signaling than transcription of fmgA and fmgBC .

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3