X rays induce interallelic homologous recombination at the human thymidine kinase gene.

Author:

Benjamin M B,Little J B

Abstract

We have developed a human lymphoblast cell line for the study of interchromosomal homologous recombination at the endogenous thymidine kinase (tk) gene on chromosome 17 (M. B. Benjamin, H. Potter, D. W. Yandell, and J. B. Little, Proc. Natl. Acad. Sci. USA 88:6652-6656, 1991). This cell line (designated 6:86) carries unique heterozygous frameshift mutations in exons 4 and 7 of its endogenous tk alleles and can revert to TK+ by frame-restoring mutations, gene conversion, or reciprocal recombination. Line 6:86 reverts spontaneously to TK+ at a frequency of 10(-7) to 10(-8), and exposures to X-irradiation or the frameshift mutagen ICR-191 induce increased reversion frequencies in a dose-dependent manner. Another cell line (designated 4:2) carries a homozygous exon 7 frameshift and is not expected to revert through mechanisms other than frame-restoring mutation. Line 4:2 reverts to TK+ at a lower spontaneous frequency than does 6:86 but can be induced with similar kinetics by ICR-191. In contrast to line 6:86, however, X rays did not induce detectable reversion of line 4:2. We have characterized a number of 6:86-derived revertants by means of restriction fragment length polymorphism analysis at tk and linked loci, single-strand conformation polymorphisms, and direct transcript sequencing. For X rays, most revertants retain both original mutations in the genomic DNA, and a subset of these frameshift-retaining revertants produce frameshift-free message, indicating that reversion is the result of reciprocal recombination within the tk gene. Frame-restoring point mutations, restoration of original sequences, and phenocopy reversion by acquisition of aminopterin resistance were also found among X-ray-induced revertants, whereas the ICR-191-induced revertants examined show only loss of the exon 7 frameshift.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3