Role of plant root exudate and Sym plasmid-localized nodulation genes in the synthesis by Rhizobium leguminosarum of Tsr factor, which causes thick and short roots on common vetch

Author:

Van Brussel A A,Zaat S A,Cremers H C,Wijffelman C A,Pees E,Tak T,Lugtenberg B J

Abstract

In a previous paper it was shown that cocultivation of Rhizobium leguminosarum with the plant Vicia sativa subsp. nigra on solid medium causes a changed mode of growth of the plant roots, resulting in thick and short roots (Tsr). The Sym plasmid present in the bacterium appeared to be essential for causing Tsr (A. A. N. van Brussel, T. Tak, A. Wetselaar, E. Pees, and C. A. Wijffelman, Plant Sci. Lett. 27:317-325, 1982). In the present paper, we show that a role in causing Tsr is general for Sym plasmids of R. leguminosarum and Rhizobium trifolii. Moreover, mutants with transposon insertions in the Sym plasmid-localized nodulation genes nodA, B, C, and D are unable to cause Tsr, in contrast to nodulation mutants localized in other parts of the Sym plasmid. The observation that Tsr could also be brought about in liquid medium enabled us to show that Tsr is caused by a soluble factor. Experiments in which plants and bacteria were grown separately in the sterile supernatant fluids of each other resulted in establishing the following sequence of events. (i) The plant produces a factor, designated as factor A. (ii) Factor A causes the Sym plasmid-harboring bacteria to produce Tsr factor. (iii) Growth of young plants in the presence of Tsr factor results in the Tsr phenotype. Models explaining this example of molecular signalling between bacteria and plants are discussed.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 129 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. In Planta Colonization and Role of T6SS in Two Rice Kosakonia Endophytes;Molecular Plant-Microbe Interactions®;2020-02

2. Nod factor signaling in symbiotic nodulation;Advances in Botanical Research;2020

3. The Genomes of Endophytic Bacteria;Endophytes of Forest Trees;2018

4. The evolution of symbiont preference traits in the model legume Medicago truncatula;New Phytologist;2016-11-16

5. Fungal endophytes for sustainable crop production;FEMS Microbiology Ecology;2016-09-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3