Affiliation:
1. LCB, CNRS, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
2. LPV, UMR217, 16 rue Claude Bernard, 75005 Paris, France
Abstract
ABSTRACT
The type II secretion (T2S) system is an essential device for
Erwinia chrysanthemi
virulence. Previously, we reported the key role of the OutF protein in forming, along with OutELM, an inner membrane platform in the Out T2S system. Here, we report that OutF copurified with five proteins identified by matrix-assisted laser desorption ionization-time of flight analysis as AcsD, TogA, SecA, Tsp, and DegP. The AcsD protein was known to be involved in the biosynthesis of achromobactin, which is a siderophore important for
E. chrysanthemi
virulence. The yeast two-hybrid system allowed us to gain further evidence for the OutF-AcsD interaction. Moreover, we showed that lack of OutF produced a pleiotropic phenotype: (i) altered production of the two siderophores of
E. chrysanthemi
, achromobactin and chrysobactin; (ii) hypersensitivity to streptonigrin, an iron-activated antibiotic; (iii) increased sensitivity to oxidative stress; and (iv) absence of the FbpA-like iron-binding protein in the periplasmic fraction. Interestingly,
outE
and
outL
mutants also exhibited similar phenotypes, but,
outD
and
outJ
mutants did not. Moreover, using the yeast two-hybrid system, several interactions were shown to occur between components of the T2S system inner membrane platform (OutEFL) and proteins involved in achromobactin production (AcsABCDE). The OutL-AcsD interaction was also demonstrated by Ni
2+
affinity chromatography. These results fully confirm our previous view that the T2S machinery is made up of three discrete blocks. The OutEFLM-forming platform is proposed to be instrumental in two different processes essential for virulence, protein secretion and iron homeostasis.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献