High-Throughput Method for Detecting Genomic-Deletion Polymorphisms

Author:

Goguet de la Salmonière Yves-Olivier Luc1,Kim C. C.2,Tsolaki A. G.1,Pym A. S.1,Siegrist M. S.1,Small Peter M.1

Affiliation:

1. Division of Infectious Diseases and Geographic Medicine, Department of Medicine

2. Department of Microbiology and Immunology, Stanford University Medical Center, Stanford, California

Abstract

ABSTRACT DNA microarrays have been successfully used with different microorganisms, including Mycobacterium tuberculosis , to detect genomic deletions relative to a reference strain. However, the cost and complexity of the microarray system are obstacles to its widespread use in large-scale studies. In order to evaluate the extent and role of large sequence polymorphisms (LSPs) or insertion-deletion events in bacterial populations, we developed a technique, termed deligotyping, which hybridizes multiplex-PCR products to membrane-bound, highly specific oligonucleotide probes. The approach has the benefits of being low cost and capable of simultaneously interrogating more than 40 bacterial strains for the presence of 43 genomic regions. The deletions represented on the membrane were selected from previous comparative genomic studies and ongoing microarray experiments. Highly specific probes for these deletions were designed and attached to a membrane for hybridization with strain-derived targets. The targets were generated by multiplex PCR, allowing simultaneous amplifications of 43 different genomic loci in a single reaction. To validate our approach, 100 strains that had been analyzed with a high-density microarray were analyzed. The membrane accurately detected the deletions identified by the microarray approach, with a sensitivity of 99.9% and a specificity of 98.0%. The deligotyping technique allows the rapid and reliable screening of large numbers of M. tuberculosis isolates for LSPs. This technique can be used to provide insights into the epidemiology, genomic evolution, and population structure of M. tuberculosis and can be adapted for the study of other organisms.

Publisher

American Society for Microbiology

Subject

Microbiology (medical)

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3