Colonization of Tomato Plants by Salmonella enterica Is Cultivar Dependent, and Type 1 Trichomes Are Preferred Colonization Sites

Author:

Barak Jeri D.1,Kramer Lara C.1,Hao Ling-yun1

Affiliation:

1. Department of Plant Pathology, University of Wisconsin—Madison, Madison, Wisconsin 53706

Abstract

ABSTRACT Nontyphoid salmonellosis caused by Salmonella enterica is the most common bacterial food-borne illness in humans, and fresh produce, including tomatoes, is a common vehicle. Accumulating data indicate that human enteric pathogenic bacteria, including S. enterica , interact actively with plants. Tomato plants were inoculated with S. enterica to evaluate plausible contamination routes and to determine if the tomato cultivar affects S. enterica colonization. S. enterica population levels on tomato leaves were cultivar dependent. S. enterica levels on Solanum pimpinellifolium (West Virginia 700 [WVa700]) were lower than on S. lycopersicum cultivars. S. enterica preferentially colonized type 1 trichomes and rarely interacted with stomata, unlike what has been reported for cut lettuce leaves. Early S. enterica leaf colonization led to contamination of all fruit, with levels as high as 10 5 CFU per fruit. Reduced bacterial speck lesion formation correlated with reduced S. enterica populations in the phyllosphere. Tomato pedicels and calyxes also harbored large S. enterica populations following inoculation via contaminated water postharvest. WVa700 green fruit harbored significantly smaller S. enterica populations than did red fruit or S. lycopersicum fruit. We found that plants irrigated with contaminated water had larger S. enterica populations than plants grown from seeds planted in infested soil. However, both routes of contamination resulted in detectable S. enterica populations in the phyllosphere. Phyllosphere S. enterica populations pose a risk of fruit contamination and subsequent human disease. Restricting S. enterica phyllosphere populations may result in reduced fruit contamination. We have identified WVa700 as a tomato cultivar that can restrict S. enterica survival in the phyllosphere.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3