Cloning and Sequence Analysis of a Highly Polymorphic Cryptosporidium parvum Gene Encoding a 60-Kilodalton Glycoprotein and Characterization of Its 15- and 45-Kilodalton Zoite Surface Antigen Products

Author:

Strong William B.12,Gut Jiri12,Nelson Richard G.123

Affiliation:

1. Division of Infectious Diseases, San Francisco General Hospital,1 and

2. Departments of Medicine2 and

3. Pharmaceutical Chemistry,3 University of California, San Francisco, San Francisco, California 94143-0811

Abstract

ABSTRACT The apicomplexan parasite Cryptosporidium parvum is a major cause of serious diarrheal disease in both humans and animals. No efficacious chemo- or immunotherapies have been identified for cryptosporidiosis, but certain antibodies directed against zoite surface antigens and/or proteins shed by gliding zoites have been shown to neutralize infectivity in vitro and/or to passively protect against, or ameliorate, disease in vivo. We previously used monoclonal antibody 11A5 to identify a 15-kDa surface glycoprotein that was shed behind motile sporozoites and was recognized by several lectins that neutralized parasite infectivity for cultured epithelial cells. Here we report the cloning and sequence analysis of the gene encoding this 11A5 antigen. Surprisingly, the gene encoded a 330-amino-acid, mucin-like glycoprotein that was predicted to contain an N-terminal signal peptide, a homopolymeric tract of serine residues, 36 sites of O-linked glycosylation, and a hydrophobic C-terminal peptide specifying attachment of a glycosylphosphatidylinositol anchor. The single-copy gene lacked introns and was expressed during merogony to produce a 60-kDa precursor which was proteolytically cleaved to 15- and 45-kDa glycoprotein products that both localized to the surface of sporozoites and merozoites. The gp15/45/60 gene displayed a very high degree of sequence diversity among C. parvum isolates, and the numerous single-nucleotide and single-amino-acid polymorphisms defined five to six allelic classes, each characterized by additional intra-allelic sequence variation. The gp15/45/60 single-nucleotide polymorphisms will prove useful for haplotyping and fingerprinting isolates and for establishing meaningful relationships between C. parvum genotype and phenotype.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Reference116 articles.

1. Microsatellite analysis of the human and bovine genotypes of Cryptosporidium parvum;Aiello A. E.;J. Eukaryot. Microbiol.,1999

2. Basic local alignment search tool

3. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs

4. Arrowood M. Ph.D. thesis. 1988 University of Arizona Tuscon

5. Effects of immune colostrum and orally administered antisporozoite monoclonal antibodies on the outcome of Cryptosporidium parvum infections in neonatal mice

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3