A system for study of coronavirus mRNA synthesis: a regulated, expressed subgenomic defective interfering RNA results from intergenic site insertion

Author:

Makino S1,Joo M1,Makino J K1

Affiliation:

1. Department of Microbiology, University of Texas, Austin 78712.

Abstract

A system that exploits defective interfering (DI) RNAs of mouse hepatitis virus (MHV) for deciphering the mechanisms of coronavirus mRNA transcription was developed. A complete cDNA clone of MHV DI RNA containing an inserted intergenic region, derived from the area of genomic RNA between genes 6 and 7, was constructed. After transfection of the in vitro-synthesized DI RNA into MHV-infected cells, replication of genomic DI RNA as well as transcription of the subgenomic DI RNA was observed. S1 nuclease protection experiments, sequence analysis, and Northern (RNA) blotting analysis revealed that the subgenomic DI RNA contained the leader sequence at its 5' end and that the body of the subgenomic DI RNA started from the inserted intergenic sequence. Two subgenomic DI RNAs were synthesized after inserting two intergenic sites into the MHV DI RNA. Metabolic labeling of virus-specific protein in DI RNA replicating cells demonstrated that a protein was translated from the subgenomic DI RNA, which can therefore be considered a functional mRNA. Transfection study of gel-purified genomic DI RNA and subgenomic DI RNA revealed that the introduction of the genomic DI RNA, but not subgenomic DI RNA, into MHV-infected cells was required for synthesis of the subgenomic DI RNA. A series of deletion mutations in the intergenic site demonstrated that the sequence flanking the consensus sequence of UCUAAAC affected the efficiency of subgenomic DI RNA transcription and that the consensus sequence was necessary but not sufficient for the synthesis of the subgenomic DI RNA.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 127 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3