Abstract
To study the interaction between Candida albicans blastoconidia and human phagocytes, we incubated peripheral leukocytes with fungi for 1 h at 37 degrees C and stained the cells with fluorescent vital stains ethidium bromide (EB) and fluorescein diacetate. Fungi that had been phagocytosed showed little staining; however, some leukocytes containing blastoconidia exhibited nuclear staining with EB, even though their cell membranes showed no signs of penetration by fungi. The number of EB-positive leukocytes was related to viability of the yeast cells and the temperature at which they were maintained before use. Because efforts to quantitate EB-positive leukocytes microscopically were frustrated by cell aggregation, we labeled the leukocytes with 51Cr and measured isotope release. We determined that leukocytes incubated with viable fungi released significantly more isotope than cells incubated alone or with killed blastoconidia. Furthermore, 51Cr release correlated directly with concentration of fungi in the assay, time of incubation, and temperature at which fungi were maintained before use. Using a number of isolates of C. albicans and several other species of Candida, we found that all exhibited cytotoxic activity against leukocytes, but the level of activity varied among organisms. Finally, we depleted or enriched peripheral leukocytes for specific cell populations and determined that only monocytes released more 51Cr after incubation with viable blastoconidia. Blastoconidia can lyse phagocytic cells through germination and penetration of cell membranes within 1 to 2 h, but the cytotoxic phenomenon we describe occurs within 15 to 30 min after yeast cells have been phagocytosed. Therefore, this capacity may represent a more immediate response by blastoconidia against phagocytosis and killing by monocytes.
Publisher
American Society for Microbiology
Subject
Infectious Diseases,Immunology,Microbiology,Parasitology
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献