Ribosomal protein S14 is altered by two-step emetine resistance mutations in Chinese hamster cells.

Author:

Madjar J J,Frahm M,McGill S,Roufa D J

Abstract

Four two-dimensional polyacrylamide gel electrophoresis systems were used to identify 78 Chinese hamster cell ribosomal proteins by the uniform nomenclature based on rat liver ribosomal proteins. The 40S ribosomal subunit protein affected by Chinese hamster ovary (CHO) cell one-step emetine resistance mutations is designated S14 in the standard nomenclature. To seek unambiguous genetic evidence for a cause and effect relationship between CHO cell emetine resistance and mutations in the S14 gene, we mutagenized a one-step CHO cell mutant and isolated second-step mutant clones resistant to 10-fold-higher concentrations of emetine. All of the highly resistant, two-step CHO cell mutants obtained displayed additional alterations in ribosomal protein S14. Hybridization complementation tests revealed that the two-step CHO cell emetine resistance mutants were members of the same complementation group defined by one-step CHO cell mutants, EmtB. Two-step mutants obtained from a Chinese hamster lung cell emetine-resistant clone belong to the EmtA complementation group. The two-step and EmtB mutants elaborated 40S ribosomal subunits, which dissociated to 32S and 40S core particles in buffers containing 0.5 M KCl at 4 degrees C. In contrast, 40S ribosomal subunits purified from all EmtA, one-step EmtB EmtC mutants, and wild-type CHO and lung cells were stable at this temperature in buffers containing substantially higher concentrations of salt. Thus, two-step emtB mutations affect the structure of S14 protein directly and the stability of the 40S ribosomal subunit indirectly.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3