Catabolite Repression and Derepression of Arylsulfatase Synthesis in Klebsiella aerogenes

Author:

Adachi Toshiro1,Okamura Haruki1,Murooka Yoshikatsu1,Harada Tokuya1

Affiliation:

1. Institute of Scientific and Industrial Research, Osaka University, Suita, Osaka, Japan (565)

Abstract

When a mutant (Mao ) of Klebsiella aerogenes lacking an enzyme for tyramine degradation (monoamine oxidase) was grown with d -xylose as a carbon source, arylsulfatase was repressed by inorganic sulfate and repression was relieved by tyramine. When the cells were grown on glucose, tyramine failed to derepress the arylsulfatase synthesis. When grown with methionine as the sole sulfur source, the enzyme was synthesized irrespective of the carbon source used. Addition of cyclic adenosine monophosphate overcame the catabolite repression of synthesis of the derepressed enzyme caused by tyramine. Uptake of tyramine was not affected by the carbon source. We isolated a mutant strain in which derepression of arylsulfatase synthesis by tyramine occurred even in the presence of glucose and inorganic sulfate. This strain also produced β-galactosidase in the presence of an inducer and glucose. These results, and those on other mutant strains in which tyramine cannot derepress enzyme synthesis, strongly suggest that a protein factor regulated by catabolite repression is involved in the derepression of arylsulfatase synthesis by tyramine.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3