Identification of a Small Tetraheme Cytochrome c and a Flavocytochrome c as Two of the Principal Soluble Cytochromes c in Shewanella oneidensis Strain MR1

Author:

Tsapin A. I.1,Vandenberghe I.2,Nealson K. H.1,Scott J. H.3,Meyer T. E.4,Cusanovich M. A.4,Harada E.5,Kaizu T.5,Akutsu H.56,Leys D.2,Van Beeumen J. J.2

Affiliation:

1. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 911091;

2. Laboratory of Protein Biochemistry and Protein Engineering, Department of Biochemistry, Physiology, and Microbiology, University of Ghent, B-9000 Ghent, Belgium2;

3. Carnegie Institution of Washington, Washington, D.C. 200153;

4. Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, Arizona 857214; and

5. Yokohama National University, Hodogaya-ku, Yokohama 240-8501,5and

6. Institute for Protein Research, Osaka University, Suita 565-0871,6 Japan

Abstract

ABSTRACT Two abundant, low-redox-potential cytochromes c were purified from the facultative anaerobe Shewanella oneidensis strain MR1 grown anaerobically with fumarate. The small cytochrome was completely sequenced, and the genes coding for both proteins were cloned and sequenced. The small cytochrome c contains 91 residues and four heme binding sites. It is most similar to the cytochromes c from Shewanella frigidimarina (formerly Shewanella putrefaciens ) NCIMB400 and the unclassified bacterial strain H1R (64 and 55% identity, respectively). The amount of the small tetraheme cytochrome is regulated by anaerobiosis, but not by fumarate. The larger of the two low-potential cytochromes contains tetraheme and flavin domains and is regulated by anaerobiosis and by fumarate and thus most nearly corresponds to the flavocytochrome c -fumarate reductase previously characterized from S. frigidimarina to which it is 59% identical. However, the genetic context of the cytochrome genes is not the same for the two Shewanella species, and they are not located in multicistronic operons. The small cytochrome c and the cytochrome domain of the flavocytochrome c are also homologous, showing 34% identity. Structural comparison shows that the Shewanella tetraheme cytochromes are not related to the Desulfovibrio cytochromes c 3 but define a new folding motif for small multiheme cytochromes c .

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3