Emergent emm4 group A Streptococcus evidences a survival strategy during interaction with immune effector cells

Author:

Odo Chioma M.1ORCID,Vega Luis A.2,Mukherjee Piyali2,DebRoy Sruti3ORCID,Flores Anthony R.24ORCID,Shelburne Samuel A.35ORCID

Affiliation:

1. Microbiology and Infectious Disease, MD Anderson UTHealth Houston Graduate School of Biomedical Sciences, Houston, Texas, USA

2. Division of Infectious Diseases, Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA

3. Department of Infectious Disease, MD Anderson Cancer Center, Houston, Texas, USA

4. Center for Antimicrobial Resistance and Microbial Genomics, University of Texas Health Sciences Center Houston, Houston, Texas, USA

5. Department of Genomic Medicine, MD Anderson Cancer Center, Houston, Texas, USA

Abstract

ABSTRACT The major gram-positive pathogen group A Streptococcus (GAS) is a model organism for studying microbial epidemics as it causes waves of infections. Since 1980, several GAS epidemics have been ascribed to the emergence of clones producing increased amounts of key virulence factors such as streptolysin O (SLO). Herein, we sought to identify mechanisms underlying our recently identified temporal clonal emergence among emm4 GAS, given that emergent strains did not produce augmented levels of virulence factors relative to historic isolates. By creating and analyzing isoallelic strains, we determined that a conserved mutation in a previously undescribed gene encoding a putative carbonic anhydrase was responsible for the defective in vitro growth observed in the emergent strains. We also identified that the emergent strains survived better inside macrophages and killed macrophages at lower rates than the historic strains. Via the creation of isogenic mutant strains, we linked the emergent strain “survival” phenotype to the downregulation of the SLO encoding gene and upregulation of the msrAB operon which encodes proteins involved in defense against extracellular oxidative stress. Our findings are in accord with recent surveillance studies which found a high ratio of mucosal (i.e., pharyngeal) relative to invasive infections among emm4 GAS. Since ever-increasing virulence is unlikely to be evolutionarily advantageous for a microbial pathogen, our data further understanding of the well-described oscillating patterns of virulent GAS infections by demonstrating mechanisms by which emergent strains adapt a “survival” strategy to outcompete previously circulating isolates.

Funder

HHS | NIH | OSC | Common Fund

Publisher

American Society for Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3