Anaerobic oxidation of ammonium is a biologically mediated process

Author:

van de Graaf A A1,Mulder A1,de Bruijn P1,Jetten M S1,Robertson L A1,Kuenen J G1

Affiliation:

1. Kluyver Laboratory of Biotechnology, Department of Microbiology and Enzymology, Delft University of Technology, The Netherlands.

Abstract

A newly discovered process by which ammonium is converted to dinitrogen gas under anaerobic conditions (the Anammox process) has now been examined in detail. In order to confirm the biological nature of this process, anaerobic batch culture experiments were used. All of the ammonium provided in the medium was oxidized within 9 days. In control experiments with autoclaved or raw wastewater, without added sludge or with added sterilized (either autoclaved or gamma irradiated) sludge, no changes in the ammonium and nitrate concentrations were observed. Chemical reactions could therefore not be responsible for the ammonium conversion. The addition of chloramphenicol, ampicillin, 2,4-dinitrophenol, carbonyl cyanide m-chlorophenyl-hydrazone (CCCP), and mercuric chloride (HgIICl2) completely inhibited the activity of the ammonium-oxidizing sludge. Furthermore, the rate of ammonium oxidation was proportional to the initial amount of sludge used. It was therefore concluded that anaerobic ammonium oxidation was a microbiological process. As the experiments were carried out in an oxygen-free atmosphere, the conversion of ammonium to dinitrogen gas did not even require a trace of O2. That the end product of the reaction was nitrogen gas has been confirmed by using 15NH4+ and 14NO3-. The dominant product was 14-15N2. Only 1.7% of the total labelled nitrogen gas produced was 15-15N2. It is therefore proposed that the N2 produced by the Anammox process is formed from equimolar amounts of NH4+ and NO3-.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Reference27 articles.

1. Transformations of ammonia and the environmental impact of nitrifying bacteria;Abeliovich A.;Biodegradation,1992

2. The anaerobic fermentation of lake deposits;Allgeier R. J.;Int. Rev. Hydrobiol.,1932

3. Betina V. 1983. The chemistry and biology of antibiotics pharmochemistry library vol. 5 p. 349-429. Elsevier Scientific Publishing Company Amsterdam.

4. Two kinds of lithotrophs missing in nature;Broda E.;Z. Allg. Mikrobiol.,1977

5. Inhibition of existing denitrification enzyme activity by chloramphenicol;Brooks M. H.;Appl. Environ. Microbiol.,1992

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3