Assembling Flagella in Salmonella Mutant Strains Producing a Type III Export Apparatus without FliO

Author:

Barker Clive S.1,Meshcheryakova Irina V.1,Inoue Tomoharu1,Samatey Fadel A.1

Affiliation:

1. Trans-Membrane Trafficking Unit, Okinawa Institute of Science and Technology, Onna, Kunigami, Okinawa, Japan

Abstract

ABSTRACT The type III export apparatus of the Salmonella flagellum consists of six transmembrane proteins (FlhA, FlhB, FliO, FliP, FliQ, and FliR) and three soluble proteins (FliH, FliI, and FliJ). Deletion of the fliO gene creates a mutant strain that is poorly motile; however, suppressor mutations in the fliP gene can partially rescue motility. To further understand the mechanism of suppression of a fliO deletion mutation, we isolated new suppressor mutant strains with partially rescued motility. Whole-genome sequence analysis of these strains found a missense mutation that localized to the clpP gene [ clpP ( V20F )], which encodes the ClpP subunit of the ClpXP protease, and a synonymous mutation that localized to the fliA gene [ fliA (+ 36TC )], which encodes the flagellar sigma factor, σ 28 . Combining these suppressor mutations with mutations in the fliP gene additively rescued motility and biosynthesis of the flagella in fliO deletion mutant strains. Motility was also rescued by an flgM deletion mutation or by plasmids carrying either the flhDC or fliA gene. The fliA (+ 36TC ) mutation increased mRNA translation of a fliA ′- lacZ gene fusion, and immunoblot analysis revealed that the mutation increased levels of σ 28 . Quantitative real-time reverse transcriptase PCR showed that either the clpP ( V20F ) or fliA (+ 36TC ) mutation rescued expression of class 3 flagellar and chemotaxis genes; still, the suppressor mutations in the fliP gene had a greater effect on bypassing the loss of fliO function. This suggests that the function of FliO is closely associated with regulation of FliP during assembly of the flagellum.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3