Epstein-Barr Virus BARF1 Protein Is Dispensable for B-Cell Transformation and Inhibits Alpha Interferon Secretion from Mononuclear Cells

Author:

Cohen Jeffrey I.1,Lekstrom Kristen1

Affiliation:

1. Medical Virology Section, Laboratory of Clinical Investigation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892

Abstract

ABSTRACT The Epstein-Barr virus (EBV) BARF1 gene encodes a soluble colony-stimulating factor 1 (CSF-1) receptor that neutralizes the effects of CSF-1 in vitro. To study the effect of BARF1 on EBV-induced transformation, we added recombinant BARF1 to B cells in the presence of EBV. BARF1 did not enhance transformation of B cells by EBV in vitro. To study the role of BARF1 in the context of EBV infection, we constructed a recombinant EBV mutant with a large deletion followed by stop codons in the BARF1 gene as well as a recombinant virus with a wild-type BARF1 gene. While BARF1 has previously been shown to act as an oncogene in several cell lines, the EBV BARF1 deletion mutant transformed B cells and initiated latent infection, and the B cells transformed with the BARF1 mutant virus induced tumors in SCID mice with an efficiency similar to that of the wild-type recombinant virus. Since human CSF-1 stimulates secretion of alpha interferon from mononuclear cells and BARF1 encodes a soluble CSF-1 receptor, we examined whether recombinant BARF1 or BARF1 derived from EBV-infected B cells could inhibit alpha interferon secretion. Recombinant BARF1 inhibited alpha interferon secretion by mononuclear cells in a dose-dependent fashion. The B cells transformed with mutant BARF1 EBV showed reduced inhibition of alpha interferon secretion by human mononuclear cells when compared with the B cells transformed with wild-type recombinant virus. These experiments indicate that BARF1 expressed from the EBV genome directly inhibits alpha interferon secretion, which may modulate the innate host response to the virus.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 100 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3