Studies of the killing kinetics of benzylpenicillin, cefuroxime, azithromycin, and sparfloxacin on bacteria in the postantibiotic phase

Author:

Odenholt I1,Löwdin E1,Cars O1

Affiliation:

1. Department of Infectious Diseases and Clinical Microbiology, University Hospital, Uppsala, Sweden.

Abstract

Most antibiotics are known to be incapable of killing nongrowing or slowly growing bacteria with few exceptions. Bacterial cell division is inhibited during the postantibiotic phase (PA phase) after short exposure to antibiotics. Only scarce and conflicting data are available concerning the ability of antibiotics to kill bacteria in the PA phase. The aim of the present study was to investigate the killing effect of four different antibiotics on bacteria in the PA phase. A postantibiotic effect (PAE) was induced by exposing Streptococcus pyogenes and Haemophilus influenzae to 10x MICs of benzylpenicillin, cefuroxime, sparfloxacin, and azithromycin. The bacteria were thereafter reexposed to a 10x MIC of the same antibiotic used for the induction of the PAE at the beginning of and after 2 and 4 h in the PA phase. Due to a very long PAE, the bacteria in PA phase induced by azithromycin were also exposed to 10x MICs after 6 and 8 h. A previously unexposed culture exposed to a 10x MIC was used as a control. The results seem to be dependent on both the antibiotic used and the bacterial species. The antibiotics exhibiting a fork bactericidal action gave significantly reduced killing of the bacteria in PA phase (cefuroxime with S. pyogenes, P < 0.01, and sparfloxacin with H. influenzae, P < 0.001), which was restored at 4 h for cefuroxime with S. pyogenes. There was a tendency to restoration of the bactericidal activity also with sparfloxacin and H. influenzae, but there was still a significant difference in killing between the control and the test bacteria in PA phase at 4 h. However, in the combinations with a lesser bactericidal effect (benzylpenicillin with S. pyogenes and sparfloxacin with S. pyogenes), there was no difference in killing between the control and the test bacteria in PA phase. Azithromycin induced long PAEs in both S. pyogenes and H. influenzae and exhibited a slower bactericidal action on both the control and the bacteria in PA phase especially at the end of the PAE, when the killing was almost bacteriostatic. Our findings in this study support the concept that a long interval (> 12 h) between doses of azithromycin, restoring full bactericidal action, may be beneficial to optimize efficacy of this drug but is not necessary for the other antibiotics evaluated, since the bactericidal effect seems to be restored already at 4 h.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

Reference30 articles.

1. The bactericidal action of penicillin on Staphylococcus pyogenes;Bigger J. W.;J. Med. Sci.,1944

2. Nutrient depletion and antibiotic susceptibility;Brown M. R. W.;J. Antimicrob. Chemother.,1977

3. Postantibiotic effects of imipenem on Pseudomonas aeruginosa;Bustamente C. I.;Antimicrob. Agents Chemother.,1984

4. Chain E. and E. S. Duthie. 1945. Bactericidal and bacteriolytic action of penicillin on the staphylococcus. Lancet i:652-657.

5. Evaluation of bactericidal activity of ~-lactam antibiotics on slowly growing bacteria cultured in the chemostat;Cozens R. M.;Antimicrob. Agents Chemother.,1986

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3