Net effect of inoculum size on antimicrobial action of ampicillin-sulbactam: studies using an in vitro dynamic model

Author:

Firsov A A1,Ruble M1,Gilbert D1,Saverino D1,Savarino D1,Manzano B1,Medeiros A A1,Zinner S H1

Affiliation:

1. Department of Medicine, Brown University, Roger Williams Medical Center 02908, Providence, USA.

Abstract

To examine the predictable effect of inoculum size on the kinetics of the antimicrobial action of ampicillin-sulbactam, five TEM-1 beta-lactamase-producing Escherichia coli strains were studied in an in vitro dynamic model at two different initial inocula (N0S). All bacteria were exposed to ampicillin-sulbactam in a simulated system reflecting the pharmacokinetic profiles in human tissue after the administration of a single intravenous dose of ampicillin (2 g) plus sulbactam (1 g). Each strain was studied at low (4.0 to 5.2 log CFU/ml) and high (5.0 to 7.1 log CFU/ml) N0S. Despite pronounced differences in susceptibilities, the patterns of the killing curves observed with a given strain at different N0S were similar. As expected, viable bacterial counts increased with inoculum size. Striking visual contrasts in the respective curves for each organism were reflected by the area under the bacterial count-time curve (AUBC) but not by the difference between the N0 and the lowest bacterial counts (Nmin) at the nadir of the killing curve: the N0-associated changes in the AUBC on average were 75%, versus 2.5% for log N0--logNmin. To examine qualitative differences in antimicrobial effects at different N0S (i.e., the net effect of the inoculum), the difference in the high and low N0S was subtracted from each point on the killing curve obtained at the higher N0 for each strain. These adjusted curves were virtually superimposable on the observed killing curves obtained at the lower N0. Moreover, by using adjusted data, the AUBC values were similar at the two inocula, although slight (average, 11%) but systematic increases in the AUBC occurred at high N0S. Thus, there was only a weak net effect of inoculum size on the antibacterial effect of ampicillin-sulbactam. Due to similar slopes of the AUBC-log N0 plots, the antibacterial action at different N0S may be easily predicted by an approximate equation; the predicted AUBCs were unbiased and well correlated with the observed AUBCs (r = 0.997). Compiled data obtained with normalized AUBCs for different strains at different N0S yielded a positive correlation (r = 0.963) between the N0-normalized AUBC and the MIC of ampicillin-sulbactam. The adjustment and normalization procedure described might be a useful tool for revealing the net effect of the inoculum and to predict the inoculum effect if there are no qualitative differences in antimicrobial action at different inocula.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

Reference17 articles.

1. Interactions of antimicrobial combinations in vitro: the relativity of synergism;Blaser J.;Scand. J. Infect. Dis.,1991

2. Blaser J. B. B. Stone and S. H. Zinner. 1985. Two compartment kinetic model with multiple artificial capillary units. J. Antimicrob. Chemother. 15(Suppl. A):131-137.

3. Efficacy of intermittent versus continuous administration of netilmicin in a two-compartment in vitro model;Blaser J.;Antimicrob. Agents Chemother.,1985

4. In vitro models for the study of antibiotic activities;Blaser J.;Prog. Drug Res,1987

5. Quantitative analysis of antimicrobial effect kinetics in an in vitro dynamic model;Firsov A. A.;Antimicrob. Agents Chemother.,1991

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3