A novel, double mutation in DNA gyrase A of Escherichia coli conferring resistance to quinolone antibiotics

Author:

Truong Q C1,Nguyen Van J C1,Shlaes D1,Gutmann L1,Moreau N J1

Affiliation:

1. Laboratoire de Recherche Moléculaire sur les Antibiotiques, Université Paris VI, France.

Abstract

A spontaneous Escherichia coli mutant, named Q3, resistant to nalidixic acid was obtained from a previously described clinical isolate of E. coli, Q2, resistant to fluoroquinolones but susceptible to nalidixic acid (E. Cambau, F. Bordon, E. Collatz, and L. Gutmann, Antimicrob. Agents Chemother. 37:1247-1252, 1993). Q3 harbored the mutation Asp82Gly in addition to the Gly81Asp mutation of Q2. The different mutations leading to Gly81Asp, Asp82Gly, and Gly81AspAsp82Gly were introduced into the gyrA gene harbored on plasmid pJSW102, and the resulting plasmids were introduced into E. coli KNK453 (gyrAts) by transformation. The presence of Asp82Gly or Gly81Asp alone led to a low-level resistance to fluoroquinolones but not to nalidixic acid resistance. When both mutations were present, resistance to both nalidixic acid and fluoroquinolones was expressed. Purified gyrases of the different mutants showed similar rates of supercoiling. Dominance of the various gyrA mutant alleles harbored on plasmids was examined. The susceptibility to quinolones associated with wild-type gyrA was always dominant. The susceptibility to nalidixic acid expressed by the Gly81Asp mutant was dominant, while that expressed by the Asp82Gly mutant was recessive. From these results, we hypothesize that some amino acids within the quinolone resistance-determining region of gyrase A are more important for the association of subunits rather than for the activity of the holoenzyme.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

Reference39 articles.

1. Fluorometric assays for DNA topoisomerases and topoisomerase-targeted drugs: quantitation of catalytic activity and DNA cleavage;Andrea J. A.;Mol. Pharmacol.,1991

2. Relationships among antibacterial activity, inhibition of DNA gyrase, and intracellular accumulation of 11 fluoroquinolones;Bazile S.;Antimicrob. Agents Chemother.,1992

3. Structure and mechanism of DNA topoisomerase II;Berger J. M.;Nature,1996

4. A rapid alkaline extraction procedure for screening recombinant plasmid DNA;Birnboim H. C.;Nucleic Acids Res.,1979

5. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding;Bradford M. M.;Anal. Biochem.,1976

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3