Quinolone resistance locus nfxD of Escherichia coli is a mutant allele of the parE gene encoding a subunit of topoisomerase IV

Author:

Breines D M1,Ouabdesselam S1,Ng E Y1,Tankovic J1,Shah S1,Soussy C J1,Hooper D C1

Affiliation:

1. Infectious Disease Unit, Massachusetts General Hospital, Boston 02114-2696, USA.

Abstract

The locus nfxD, which contributes to high-level quinolone resistance in Escherichia coli KF111b (gyrAr nfxB nfxD), is only expressed in the presence of a gyrA mutation, and maps to the region of the parC and parE genes, was outcrossed into strain KF130, creating strain DH161 (gyrAr nfxD). DNA sequence analysis of DH161 revealed no changes in the topoisomerase IV parC quinolone resistance-determining region but did identify a single T-to-A mutation in parE at codon 445, leading to a change from Leu to His. Full-length cloned parE+ partially complemented the resistance phenotype in KF111b and DH161, but did not complement the resistance phenotype in strain KF130 (gyrAr). No complementation was seen with cloned, truncated parE+. To confirm these findings, gyrAr was first outcrossed from KF130 into E. coli W3110parE10 [parE temperature sensitive(Ts)] and KL16. The transduced strains KL16 and W3110parE10 were subsequently transformed with plasmids containing cloned parE from DH161 or KL16. Cloned parE from DH161 increased norfloxacin resistance in the parE(Ts) background twofold at 30 degrees C and fourfold at 42 degrees C compared to those for cloned parE from KL16. The same experiment with a non-Ts background revealed a twofold increase in the norfloxacin MIC at both 30 and 42 degrees C. These data identify the nfxD conditional resistance locus as a mutant allele of parE. This report is the first of a quinolone-resistant parE mutant and confirms the role of topoisomerase IV as a secondary target of norfloxacin in E. coli.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

Cited by 103 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3