The immunosuppressant FK506 and its nonimmunosuppressive analog L-685,818 are toxic to Cryptococcus neoformans by inhibition of a common target protein

Author:

Odom A1,Del Poeta M1,Perfect J1,Heitman J1

Affiliation:

1. Department of Genetics, Duke University Medical Center, Durham, North Carolina 27710, USA.

Abstract

The immunosuppressant FK506 (tacrolimus) is an antifungal natural product macrolide that suppresses the immune system by blocking T-cell activation. In complex with the intracellular protein FKBP12, FK506 inhibits calcineurin, a Ca(2+)-calmodulin-dependent serine-threonine protein phosphatase. We recently reported that growth of the opportunistic fungal pathogen Cryptococcus neoformans is resistant to FK506 at 24 degrees C but sensitive at 37 degrees C and that calcineurin, the target of FKBP12-FK506, is required for growth at 37 degrees C in vitro and pathogenicity in vivo. These findings identify calcineurin as a potential antifungal drug target. In previous studies the calcineurin inhibitor cyclosporin A (CsA) was effective against murine pulmonary infections but exacerbated cryptococcal meningitis in rabbits and mice, likely because CsA does not cross the blood-brain barrier. Although we find that FK506 penetrates the CNS, FK506 also exacerbates cryptococcal meningitis in rabbits. Thus, FK506 immunosuppression outweighs antifungal action in vivo. Like FK506, the nonimmunosuppressive FK506 analog L-685,818 is toxic to C. neoformans in vitro at 37 degrees C but not at 24 degrees C, and FK506-resistant mutants are resistant to L-685,818, indicating a similar mechanism of action. Fluconazole-resistant C. neoformans clinical isolates were also found to be susceptible to both FK506 and L-685,818. Our findings identify calcineurin as a novel antifungal drug target and suggest the nonimmunosuppressive FK506 analog L-685,818 or other congeners warrant further consideration as antifungal drugs for C. neoformans.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3