Chlamydia -containing spheres are a novel and predominant form of egress by the pathogen Chlamydia psittaci

Author:

Scholz Jana1ORCID,Holland Gudrun2ORCID,Laue Michael2ORCID,Banhart Sebastian1ORCID,Heuer Dagmar1ORCID

Affiliation:

1. Unit of Sexually Transmitted Bacterial Pathogens and HIV, Robert Koch Institute, Berlin, Germany

2. Unit of Advanced Light and Electron Microscopy, Robert Koch Institute, Berlin, Germany

Abstract

ABSTRACT The egress of intracellular bacteria from host cells and cellular tissues is a critical process during the infection cycle. This process is essential for bacteria to spread inside the host and can influence the outcome of an infection. For the obligate intracellular Gram-negative zoonotic bacterium Chlamydia psittaci, little is known about the mechanisms resulting in bacterial egress from the infected epithelium. Here, we describe and characterize Chlamydia -containing spheres (CCSs), a novel and predominant type of non-lytic egress utilized by Chlamydia spp. CCSs are spherical, low-phase contrast structures surrounded by a phosphatidylserine-exposing membrane with specific barrier functions. They contain infectious progeny and morphologically impaired cellular organelles. CCS formation is a sequential process starting with the proteolytic cleavage of a DEVD tetrapeptide-containing substrate that can be detected inside the chlamydial inclusions, followed by an increase in the intracellular calcium concentration of the infected cell. Subsequently, blebbing of the plasma membrane begins, the inclusion membrane destabilizes, and the proteolytic cleavage of a DEVD-containing substrate increases rapidly within the whole infected cell. Finally, infected, blebbing cells detach and leave the monolayer, thereby forming CCS. This sequence of events is unique for chlamydial CCS formation and fundamentally different from previously described Chlamydia egress pathways. Thus, CCS formation represents a major, previously uncharacterized egress pathway for intracellular pathogens that could be linked to Chlamydia biology in general and might influence the infection outcome in vivo . IMPORTANCE Host cell egress is essential for intracellular pathogens to spread within an organism and for host-to-host transmission. Here, we characterize Chlamydia -containing sphere (CCS) formation as a novel and predominant non-lytic egress pathway of the intracellular pathogens Chlamydia psittaci and Chlamydia trachomatis . CCS formation is fundamentally different from extrusion formation, the previously described non-lytic egress pathway of C. trachomatis . CCS formation is a unique sequential process, including proteolytic activity, followed by an increase in intracellular calcium concentration, inclusion membrane destabilization, plasma membrane blebbing, and the final detachment of a whole phosphatidylserine-exposing former host cell. Thus, CCS formation represents an important and previously uncharacterized egress pathway for intracellular pathogens that could possibly be linked to Chlamydia biology, including host tropism, protection from host cell defense mechanisms, or bacterial pathogenicity.

Funder

Deutsche Forschungsgemeinschaft

Publisher

American Society for Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3