Formation of a stable RNase Y-RicT (YaaT) complex requires RicA (YmcA) and RicF (YlbF)

Author:

Dubnau Eugenie1,DeSantis Micaela1,Dubnau David12ORCID

Affiliation:

1. Public Health Research Institute, Rutgers University , Newark, New Jersey, USA

2. Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University , Newark, New Jersey, USA

Abstract

ABSTRACT In Bacillus subtilis , the RicT (YaaT), RicA (YmcA), and RicF (YlbF) proteins, which form a stable ternary complex, are needed together with RNase Y (Rny) to cleave and thereby stabilize several key transcripts encoding enzymes of intermediary metabolism. We show here that RicT, but not RicA or RicF, forms a stable complex with Rny and that this association requires the presence of RicA and RicF. We propose that RicT is handed off from the ternary complex to Rny. We show further that the two iron-sulfur clusters carried by the ternary Ric complex are required for the formation of the stable RicT-Rny complex. We demonstrate that proteins of the degradosome-like network of B. subtilis , which also interact with Rny, are dispensable for processing of the gapA operon. Thus, Rny participates in distinct RNA-related processes, determined by its binding partners, and a RicT-Rny complex is likely the functional entity for gapA mRNA maturation. IMPORTANCE The action of nucleases on RNA is universal and essential for all forms of life and includes processing steps that lead to the mature and functional forms of certain transcripts. In Bacillus subtilis, it has been shown that key transcripts for energy-producing steps of glycolysis, for nitrogen assimilation, and for oxidative phosphorylation, all of them crucial processes of intermediary metabolism, are cleaved at specific locations, resulting in mRNA stabilization. The proteins required for these cleavages in B. subtilis [Rny (RNase Y), RicA (YmcA), RicF (YlbF), and RicT (YaaT)] are broadly conserved among the firmicutes, including several important pathogens, hinting that regulatory mechanisms they control may also be conserved. Several aspects of these regulatory events have been explored: phenotypes associated with the absence of these proteins have been described, the impact of these absences on the transcriptome has been documented, and there has been significant exploration of the biochemistry and structural biology of Rny and the Ric proteins. The present study further advances our understanding of the association of Ric proteins and Rny and shows that a complex of Rny with RicT is probably the entity that carries out mRNA maturation.

Funder

HHS | NIH | National Institute of General Medical Sciences

Publisher

American Society for Microbiology

Subject

Virology,Microbiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3