Potential of Agrobacterium tumefaciens and Octopine-Utilizing Fluorescent Pseudomonas Strains To Attach to Susceptible Potato Tissues

Author:

Chan James W. Y. F.1,Ramey William D.1,Moore Larry W.1,Bell Colin R.1

Affiliation:

1. Department of Microbiology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1W5, and Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 973312

Abstract

The binding characteristics of two octopine-catabolizing pseudomonads, Pseudomonas fluorescens B99A and E175D, which were isolated from crown galls, have been examined. The binding of strain B99A to potato disks was very weak, followed a Freundlich isotherm, and was temperature and pH independent. Strain E175D displayed strong attachment and followed a Langmuir isotherm. Despite these fundamental differences in binding characteristics, when each strain was placed in competitive binding assays with either Agrobacterium tumefaciens B6 or A. tumefaciens ATCC 15955, the number of bound pseudomonad cells decreased compared with those obtained in independent trials. Furthermore, the binding of A. tumefaciens cells was increased. In prebinding experiments, in which the potato disks were bound with the pseudomonads before exposure to the agrobacteria, the number of bound pseudomonad cells again decreased. This implies that increased desorption was occurring. In these prebinding studies, the numbers of bound A. tumefaciens ATCC 15955 increased, but the number of bound A. tumefaciens B6 remained the same. The mechanism for this observed synergism on the binding of agrobacterial cells and the depression in bound pseudomonad cells is believed to be alterations in the electrostatic or ionic charges on the plant and bacterial cell surfaces. The synergistic effect on A. tumefaciens undermines the use of these pseudomonads as potential biocontrol agents for crown gall.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Reference47 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3