The RNA-Binding Domain of Bacteriophage P22 N Protein Is Highly Mutable, and a Single Mutation Relaxes Specificity toward λ

Author:

Cocozaki Alexis I.1,Ghattas Ingrid R.1,Smith Colin A.1

Affiliation:

1. Department of Biology, American University of Beirut, Beirut, Lebanon

Abstract

ABSTRACT Antitermination in bacteriophage P22, a lambdoid phage, uses the arginine-rich domain of the N protein to recognize boxB RNAs in the nut site of two regulated transcripts. Using an antitermination reporter system, we screened libraries in which each nonconserved residue in the RNA-binding domain of P22 N was randomized. Mutants were assayed for the ability to complement N-deficient virus and for antitermination with P22 boxB left and boxB right reporters. Single amino acid substitutions complementing P22 N virus were found at 12 of the 13 positions examined. We found evidence for defined structural roles for seven nonconserved residues, which was generally compatible with the nuclear magnetic resonance model. Interestingly, a histidine can be replaced by any other aromatic residue, although no planar partner is obvious. Few single substitutions showed bias between boxB left and boxB right , suggesting that the two RNAs impose similar constraints on genetic drift. A separate library comprising only hybrids of the RNA-binding domains of P22, λ, and φ21 N proteins produced mutants that displayed bias. P22 N plaque size plotted against boxB left and boxB right reporter activities suggests that lytic viral fitness depends on balanced antitermination. A few N proteins were able to complement both λ N- and P22 N-deficient viruses, but no proteins were found to complement both P22 N- and φ21 N-deficient viruses. A single tryptophan substitution allowed P22 N to complement both P22 and λ N . The existence of relaxed-specificity mutants suggests that conformational plasticity provides evolutionary transitions between distinct modes of RNA-protein recognition.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3