Affiliation:
1. Department of Microbiology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
Abstract
ABSTRACT
Plasmids pRAS3.1 and pRAS3.2 are natural variants of the IncQ-2 plasmid family, that except for two differences, have identical plasmid backbones. Plasmid pRAS3.1 has four 22-bp iterons in its
oriV
region, while pRAS3.2 has only three 6-bp repeats and pRAS3.1 has five 6-bp repeats in the promoter region of the
mobB-mobA/repB
genes and pRAS3.2 has only four. In previous work, we showed that the overall effect of these differences was that when the plasmid was in an
Escherichia coli
host, the copy numbers of pRAS3.1 and pRAS3.2 were approximately 41 and 30, respectively. As pRAS3.1 and pRAS3.2 are likely to have arisen from the same ancestor, we addressed the question of whether one of the variants had an evolutionary advantage over the other. By constructing a set of identical plasmids with the number of 22-bp iterons varying from three to seven, it was found that plasmids with four or five iterons displaced plasmids with three iterons even though they had lower copy numbers. Furthermore, the metabolic load that the plasmids placed on
E. coli
host cells compared with plasmid-free cells increased with copy number from 10.9% at a copy number of 59 to 2.6% at a copy number of 15. Plasmid pRAS3.1 with four 22-bp iterons was able to displace pRAS3.2 with three iterons when both were coresident in the same host. However, the lower-copy-number pRAS3.2 placed 2.8% less of a metabolic burden on an
E. coli
host population, and therefore, pRAS3.2 has a competitive advantage over pRAS3.1 at the population level, as pRAS3.2-containing cells would be expected to outgrow pRAS3.1-containing cells.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献