Affiliation:
1. Department of Microbiology and School of Oceanography, Oregon State University, Corvallis, Oregon 97331
Abstract
The cells of the marine bacterium Ant-300 were found to take up arginine when this substrate was at low concentrations. The cells possessed an uptake system(s) that specifically transported
l
-arginine. The kinetic parameters for uptake appeared to differ when the cells were exposed to nanomolar and micromolar concentrations of the amino acid. Uptake over this concentration range functioned in the absence of an exogenous energy source, even after the cells had been preincubated in unsupplemented artificial seawater. Respiratory activity appeared to be a more important driving force for arginine uptake than adenosine 5′-triphosphate hydrolysis. The cells also exhibited chemotaxis toward
l
-arginine. The minimum arginine concentration needed to elicit a chemotactic response was between 10
−5
and 10
−6
M. It is proposed that the capture of arginine by cells of Ant-300 in nutrient-depleted waters, which are typical of the open ocean, proceeds via high-affinity active transport, whereas in substrate-enriched seawater, capture involves chemotaxis and an active transport mechanism with reduced affinity for the substrate.
Publisher
American Society for Microbiology
Subject
Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology
Cited by
68 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献