14-3-3 (Bmh) Proteins Inhibit Transcription Activation by Adr1 through Direct Binding to Its Regulatory Domain

Author:

Parua P. K.1,Ratnakumar S.1,Braun K. A.1,Dombek K. M.1,Arms E.1,Ryan P. M.1,Young E. T.1

Affiliation:

1. Department of Biochemistry, University of Washington, 1705 NE Pacific Street, Seattle, Washington 98195-7350

Abstract

ABSTRACT 14-3-3 proteins, known as Bmh in yeast, are ubiquitous, highly conserved proteins that function as adaptors in signal transduction pathways by binding to phosphorylated proteins to activate, inactivate, or sequester their substrates. Bmh proteins have an important role in glucose repression by binding to Reg1, the regulatory subunit of Glc7, a protein phosphatase that inactivates the AMP-activated protein kinase Snf1. We describe here another role for Bmh in glucose repression. We show that Bmh binds to the Snf1-dependent transcription factor Adr1 and inhibits its transcriptional activity. Bmh binds within the regulatory domain of Adr1 between amino acids 215 and 260, the location of mutant ADR1 c alleles that deregulate Adr1 activity. This provides the first explanation for the phenotype resulting from these mutations. Bmh inhibits Gal4-Adr1 fusion protein activity by binding to the Ser230 region and blocking the function of a nearby cryptic activating region. ADR1 c alleles, or the inactivation of Bmh, relieve the inhibition and Snf1 dependence of this activating region, indicating that the phosphorylation of Ser230 and Bmh are important for the inactivation of Gal4-Adr1. The Bmh binding domain is conserved in orthologs of Adr1, suggesting that it acquired an important biological function before the whole-genome duplication of the ancestor of S. cerevisiae .

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3