Theiler's Virus Infection: a Model for Multiple Sclerosis

Author:

Oleszak Emilia L.12345,Chang J. Robert12345,Friedman Herman12345,Katsetos Christos D.12345,Platsoucas Chris D.12345

Affiliation:

1. Department of Anatomy and Cell Biology

2. Fels Institute for Cancer Research and Molecular Biology

3. Department of Microbiology and Immunology

4. Temple University School of Medicine, and Department of Pediatrics (Neurology) and Pathology, St. Christopher's Hospital for Children and Department of Pediatrics, Drexel University College of Medicine, Philadelphia, Pennsylvania

5. Department of Medical Microbiology and Immunology, University of South Florida, Tampa, Florida

Abstract

SUMMARY Both genetic background and environmental factors, very probably viruses, appear to play a role in the etiology of multiple sclerosis (MS). Lessons from viral experimental models suggest that many different viruses may trigger inflammatory demyelinating diseases resembling MS. Theiler's virus, a picornavirus, induces in susceptible strains of mice early acute disease resembling encephalomyelitis followed by late chronic demyelinating disease, which is one of the best, if not the best, animal model for MS. During early acute disease the virus replicates in gray matter of the central nervous system but is eliminated to very low titers 2 weeks postinfection. Late chronic demyelinating disease becomes clinically apparent approximately 2 weeks later and is characterized by extensive demyelinating lesions and mononuclear cell infiltrates, progressive spinal cord atrophy, and axonal loss. Myelin damage is immunologically mediated, but it is not clear whether it is due to molecular mimicry or epitope spreading. Cytokines, nitric oxide/reactive nitrogen species, and costimulatory molecules are involved in the pathogenesis of both diseases. Close similarities between Theiler's virus-induced demyelinating disease in mice and MS in humans, include the following: major histocompatibility complex-dependent susceptibility; substantial similarities in neuropathology, including axonal damage and remyelination; and paucity of T-cell apoptosis in demyelinating disease. Both diseases are immunologically mediated. These common features emphasize the close similarities of Theiler's virus-induced demyelinating disease in mice and MS in humans.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Microbiology (medical),Public Health, Environmental and Occupational Health,General Immunology and Microbiology,Epidemiology

Reference524 articles.

1. Abehsira-Amar, O., M. Gibert, M. Joliy, J. Theze, and D. L. Jankovic. 1992. IL-4 plays a dominant role in the differential development of Tho into Th1 and Th2 cells. J. Immunol.148:3820-3829.

2. Abramson, S. L., and J. I. Gallin. 1990. IL-4 inhibits superoxide production by human mononuclear phagocytes. J. Immunol.144:625-630.

3. A Determinant for Central Nervous System Persistence Localized in the Capsid of Theiler’s Murine Encephalomyelitis Virus by Using Recombinant Viruses

4. Adams, J. M., and D. T. Imagava. 1962. Measles antibodies in multiple sclerosis. Proc. Soc. Exp. Biol. Med.111:562-566.

5. Aderka, D., J. M. Le, and J. Vilcek. 1989. IL-6 inhibits lipopolysaccharide-induced tumor necrosis factor production in cultured human monocytes, U937 cells, and in mice. J. Immunol.143:3517-3523.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3