Saccharomyces cerevisiae Vacuolar H + -ATPase Regulation by Disassembly and Reassembly: One Structure and Multiple Signals

Author:

Parra Karlett J.1,Chan Chun-Yuan1,Chen Jun1

Affiliation:

1. Department of Biochemistry and Molecular Biology of the School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA

Abstract

ABSTRACT Vacuolar H + -ATPases (V-ATPases) are highly conserved ATP-driven proton pumps responsible for acidification of intracellular compartments. V-ATPase proton transport energizes secondary transport systems and is essential for lysosomal/vacuolar and endosomal functions. These dynamic molecular motors are composed of multiple subunits regulated in part by reversible disassembly, which reversibly inactivates them. Reversible disassembly is intertwined with glycolysis, the RAS/cyclic AMP (cAMP)/protein kinase A (PKA) pathway, and phosphoinositides, but the mechanisms involved are elusive. The atomic- and pseudo-atomic-resolution structures of the V-ATPases are shedding light on the molecular dynamics that regulate V-ATPase assembly. Although all eukaryotic V-ATPases may be built with an inherent capacity to reversibly disassemble, not all do so. V-ATPase subunit isoforms and their interactions with membrane lipids and a V-ATPase-exclusive chaperone influence V-ATPase assembly. This minireview reports on the mechanisms governing reversible disassembly in the yeast Saccharomyces cerevisiae , keeping in perspective our present understanding of the V-ATPase architecture and its alignment with the cellular processes and signals involved.

Publisher

American Society for Microbiology

Subject

Molecular Biology,General Medicine,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3