Ampicillin Enhances Daptomycin- and Cationic Host Defense Peptide-Mediated Killing of Ampicillin- and Vancomycin-Resistant Enterococcus faecium

Author:

Sakoulas George,Bayer Arnold S.,Pogliano Joseph,Tsuji Brian T.,Yang Soo-Jin,Mishra Nagendra N.,Nizet Victor,Yeaman Michael R.,Moise Pamela A.

Abstract

ABSTRACTWe studied an ampicillin- and vancomycin-resistantEnterococcus faecium(VRE) isolate from a patient with endocarditis and bacteremia refractory to treatment with daptomycin (6 mg/kg of body weight) plus linezolid. Blood cultures cleared within 24 h of changing therapy to daptomycin (12 mg/kg) plus ampicillin. We examined the effects of ampicillin on daptomycin-induced growth inhibition and killing, surface charge, and susceptibility to several prototypical host defense cationic antimicrobial peptides. MICs and time-kill curves with daptomycin were assessed in the presence and absence of ampicillin. The impact of ampicillin on surface charge was assessed by flow cytometry and a poly-l-lysine binding assay. The effects of ampicillin preexposures upon VRE killing by five distinct cationic peptides of different structure, charge, origin, and mechanism of action were analyzed using the epidermal cathelicidin LL-37, thrombin-induced platelet microbicidal proteins (tPMPs), and a synthetic congener modeled after tPMP microbicidal domains (RP-1), human neutrophil peptide-1 (hNP-1), and polymyxin B (bacteria derived). Fluoroscein-Bodipy-labeled daptomycin was used to evaluate daptomycin binding to VRE membranes in the presence or absence of ampicillin. In media containing ampicillin (25 to 100 mg/liter), daptomycin MICs decreased from 1.0 to 0.38 mg/liter. Based on time-kill analysis and anin vitropharmacodynamic model, ampicillin enhanced daptomycin activity against the study VRE from a bacteriostatic to a bactericidal profile. VRE grown in ampicillin (25 to 150 mg/liter) demonstrated an incremental reduction in its relative net positive surface charge. When grown in the presence (versus absence) of ampicillin (25 and 100 mg/liter), the VRE strain (i) was more susceptible to killing by LL-37, tPMPs, hNP-1, and RP-1 but not to polymyxin B and (ii) exhibited greater binding to Bodipy-labeled daptomycin. We conclude that ampicillin induces reductions in net positive bacterial surface charge of VRE, correlating with enhanced bactericidal effects of cationic calcium-daptomycin and a diverse range of other cationic peptidesin vitro. While the mechanism(s) of such β-lactam-mediated shifts in surface charge remains to be defined, these finding suggest a potential for β-lactam-mediated enhancement of activity of both daptomycin and innate host defense peptides against antibiotic-resistant bacteria.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3