Author:
Maria-Neto Simone,Cândido Elizabete de Souza,Rodrigues Diana Ribas,de Sousa Daniel Amaro,da Silva Ezequiel Marcelino,de Moraes Lidia Maria Pepe,Otero-Gonzalez Anselmo de Jesus,Magalhães Beatriz Simas,Dias Simoni Campos,Franco Octávio Luiz
Abstract
ABSTRACTAntimicrobial peptides (AMPs) are effective antibiotic agents commonly found in plants, animals, and microorganisms, and they have been suggested as the future of antimicrobial chemotherapies. It is vital to understand the molecular details that define the mechanism of action of resistance to AMPs for a rational planning of the next antibiotic generation and also to shed some light on the complex AMP mechanism of action. Here, the antibiotic resistance ofEscherichia coliATCC 8739 to magainin I was evaluated in the cytosolic subproteome. Magainin-resistant strains were selected after 10 subsequent spreads at subinhibitory concentrations of magainin I (37.5 mg · liter−1), and their cytosolic proteomes were further compared to those of magainin-susceptible strains through two-dimensional electrophoresis analysis. As a result, 41 differentially expressed proteins were detected byin silicoanalysis and further identified by tandem mass spectrometryde novosequencing. Functional categorization indicated an intense metabolic response mainly in energy and nitrogen uptake, stress response, amino acid conversion, and cell wall thickness. Indeed, data reported here show that resistance to cationic antimicrobial peptides possesses a greater molecular complexity than previously supposed, resulting in cell commitment to several metabolic pathways.
Publisher
American Society for Microbiology
Subject
Infectious Diseases,Pharmacology (medical),Pharmacology
Cited by
42 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献