Candida glabrata Persistence in Mice Does Not Depend on Host Immunosuppression and Is Unaffected by Fungal Amino Acid Auxotrophy

Author:

Jacobsen I. D.1,Brunke S.1,Seider K.1,Schwarzmüller T.2,Firon A.34,d'Enfért C.34,Kuchler K.2,Hube B.15

Affiliation:

1. Department for Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, 07745 Jena

2. Medical University of Vienna, Christian Doppler Laboratory for Infection Biology, Max F. Perutz Laboratories, Campus Vienna Biocenter, Dr. Bohr-Gasse 9/2, A-1030 Vienna, Austria

3. Institut Pasteur, Unité Biologie et Pathogénicité Fongiques, Département Génomes et Génétique

4. INRA USC2019, F-75015 Paris, France

5. Friedrich Schiller University Jena, Jena, Germany

Abstract

ABSTRACT Candida glabrata has emerged as an important fungal pathogen of humans, causing life-threatening infections in immunocompromised patients. In contrast, mice do not develop disease upon systemic challenge, even with high infection doses. In this study we show that leukopenia, but not treatment with corticosteroids, leads to fungal burdens that are transiently increased over those in immunocompetent mice. However, even immunocompetent mice were not capable of clearing infections within 4 weeks. Tissue damage and immune responses to microabscesses were mild as monitored by clinical parameters, including blood enzyme levels, histology, myeloperoxidase, and cytokine levels. Furthermore, we investigated the suitability of amino acid auxotrophic C. glabrata strains for in vitro and in vivo studies of fitness and/or virulence. Histidine, leucine, or tryptophan auxotrophy, as well as a combination of these auxotrophies, did not influence in vitro growth in rich medium. The survival of all auxotrophic strains in immunocompetent mice was similar to that of the parental wild-type strain during the first week of infection and was only mildly reduced 4 weeks after infection, suggesting that C. glabrata is capable of utilizing a broad range of host-derived nutrients during infection. These data suggest that C. glabrata histidine, leucine, or tryptophan auxotrophic strains are suitable for the generation of knockout mutants for in vivo studies. Notably, our work indicates that C. glabrata has successfully developed immune evasion strategies enabling it to survive, disseminate, and persist within mammalian hosts.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3