A hierarchy of trans-acting factors modulates translation of an activator of amino acid biosynthetic genes in Saccharomyces cerevisiae.

Author:

Hinnebusch A G

Abstract

The GCN4 gene encodes a positive effector of amino acid biosynthetic genes in Saccharomyces cerevisiae. Genetic analysis has suggested that GCN4 is regulated by a hierarchy of interacting positive and negative effectors in response to amino acid starvation. Results presented here for a GCN4-lacZ gene fusion support this regulatory model and suggest that the regulators of GCN4 exert their effects primarily at the level of translation of GCN4 mRNA. Both the GCN2 and GCN3 products appear to stimulate translation of GCN4 mRNA in response to amino acid starvation, because a recessive mutation in either gene blocked derepression of GCN4-lacZ fusion enzyme levels but did not reduce the fusion transcript level relative to that in wild-type cells grown in the same conditions. The GCD1 product appears to inhibit translation of GCN4 mRNA because under certain growth conditions, the gcd1-101 mutation led to derepression of the GCN4-lacZ fusion enzyme level in the absence of any increase in the fusion transcript level. In addition, the gcd1-101 mutation suppressed the low translational efficiency of GCN4-lacZ mRNA observed in gcn2- and gcn3- cells. A deletion of four small open reading frames in the 5' leader of GCN4-lacZ mRNA mimicked the effect of a gcd1 mutation and derepressed translation of the fusion transcript in the absence of either starvation conditions or the GCN2 and GCN3 products. By contrast, in a gcd1- strain, the deletion resulted in little additional increase in the translational efficiency of the fusion transcript. These results suggest that GCD1 mediates the translational repression normally exerted by the GCN4 leader sequences and that GCN2 and GCN3 antagonize these negative elements in response to amino acid starvation. The effects of the trans-acting mutations on the translation of GCN4-lacZ mRNA remained intact even when transcription of the fusion gene was placed under the control of the S. cerevisiae GAL1 transcriptional control element.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3