In Vitro and In Vivo Infection of Neural Cells by a Recombinant Measles Virus Expressing Enhanced Green Fluorescent Protein

Author:

Duprex W. Paul1,Mcquaid Stephen2,Roscic-Mrkic Branka3,Cattaneo Roberto4,Mccallister Cecilia1,Rima Bert K.1

Affiliation:

1. School of Biology and Biochemistry, The Queen's University of Belfast, Belfast BT9 7BL,1 and

2. Neuropathology Laboratory, Royal Group of Hospitals Trust, Belfast BT12 6B1,2 Northern Ireland, United Kingdom;

3. Institut für Molekularbiologie, Universität Zürich, CH-8057 Zürich, Switzerland3

4. Molecular Medicine Program, Mayo Clinic, Rochester, Minnesota 559054; and

Abstract

ABSTRACT This study focused on the in vitro infection of mouse and human neuroblastoma cells and the in vivo infection of the murine central nervous system with a recombinant measles virus. An undifferentiated mouse neuroblastoma cell line (TMN) was infected with the vaccine strain of measles virus (MVeGFP), which expresses enhanced green fluorescent protein (EGFP). MVeGFP infected the cells, and cell-to-cell spread was studied by virtue of the resulting EGFP autofluorescence, using real-time confocal microscopy. Cells were differentiated to a neuronal phenotype, and extended processes, which interconnected the cells, were observed. It was also possible to infect the differentiated neuroblastoma cells (dTMN) with MVeGFP. Single autofluorescent EGFP-positive cells were selected at the earliest possible point in the infection, and the spread of EGFP autofluorescence was monitored. In this instance the virus used the interconnecting processes to spread from cell to cell. Human neuroblastoma cells (SH-SY-5Y) were also infected with MVeGFP. The virus infected these cells, and existing processes were used to initiate new foci of infection at distinct regions of the monolayer. Transgenic animals expressing CD46, a measles virus receptor, and lacking interferon type 1 receptor gene were infected intracerebrally with MVeGFP. A productive infection ensued, and the mice exhibited clinical signs of infection, such as ataxia and an awkward gait, identical to those previously observed for the parental virus (Edtag). Mice were sacrificed, and brain sections were examined for EGFP autofluorescence by confocal scanning laser microscopy over a period of 6 h. EGFP was detected in discrete focal regions of the brain and in processes, which extended deep into the parenchyma. Collectively, these results indicate (i) that MVeGFP can be used to monitor virus replication sensitively, in real time, in animal tissues, (ii) that infection of ependymal cells and neuroblasts provides a route by which measles virus can enter the central nervous system in mouse models of encephalitis, and (iii) that upon infection, the virus spreads transneuronally.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3