A Hypothesis for DNA Viruses as the Origin of Eukaryotic Replication Proteins

Author:

Villarreal Luis P.1,DeFilippis Victor R.2

Affiliation:

1. Departments of Molecular Biology and Biochemistry1 and

2. Ecology and Evolutionary Biology,2 University of California, Irvine, California 92697

Abstract

ABSTRACT The eukaryotic replicative DNA polymerases are similar to those of large DNA viruses of eukaryotic and bacterial T4 phages but not to those of eubacteria. We develop and examine the hypothesis that DNA virus replication proteins gave rise to those of eukaryotes during evolution. We chose the DNA polymerase from phycodnavirus (which infects microalgae) as the basis of this analysis, as it represents a virus of a primitive eukaryote. We show that it has significant similarity with replicative DNA polymerases of eukaryotes and certain of their large DNA viruses. Sequence alignment confirms this similarity and establishes the presence of highly conserved domains in the polymerase amino terminus. Subsequent reconstruction of a phylogenetic tree indicates that these algal viral DNA polymerases are near the root of the clade containing all eukaryotic DNA polymerase delta members but that this clade does not contain the polymerases of other DNA viruses. We consider arguments for the polarity of this relationship and present the hypothesis that the replication genes of DNA viruses gave rise to those of eukaryotes and not the reverse direction.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 169 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. How Turing parasites expand the computational landscape of digital life;Physical Review E;2023-10-23

2. From Mimivirus to Mirusvirus: The Quest for Hidden Giants;Viruses;2023-08-17

3. A critical analysis of the current state of virus taxonomy;Frontiers in Microbiology;2023-08-03

4. Self-empowerment of life through RNA networks, cells and viruses;F1000Research;2023-03-06

5. Origin of Life;Conflicting Models for the Origin of Life;2023-02-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3