Characterization of the Zinc Binding Activity of the Rubella Virus Nonstructural Protease

Author:

Liu Xin1,Yang Jenny2,Ghazi A. Mohamad3,Frey Teryl K.1

Affiliation:

1. Departments of Biology,1

2. Chemistry,2 and

3. Geology,3 Georgia State University, Atlanta, Georgia 30303

Abstract

ABSTRACT The rubella virus (RUB) nonstructural (NS) protein (NSP) ORF encodes a protease that cleaves the NSP precursor (240 kDa) at a single site to produce two products. A cleavage site mutation was introduced into a RUB infectious cDNA clone and found to be lethal, demonstrating that cleavage of the NSP precursor is necessary for RUB replication. Based on computer alignments, the RUB NS protease was predicted to be a papain-like cysteine protease (PCP) with the residues Cys1152 and His1273 as the catalytic dyad; however, the RUB NS protease was recently found to require divalent cations such as Zn, Co, and Cd for activity (X. Liu, S. L. Ropp, R. J. Jackson, and T. K. Frey, J. Virol. 72:4463–4466, 1998). To analyze the function of metal cation binding in protease activity, Zn binding studies were performed using the minimal NS protease domain within the NSP ORF. When expressed as a maltose binding protein (MBP) fusion protein by bacteria, the NS protease exhibited activity both in the bacteria and in vitro following purification when denatured and refolded in the presence of Zn. Atomic absorption analysis detected 1.6 mol of Zn bound per mol of protein refolded in this manner. Expression of individual domains within the protease as MBP fusions and analysis by a Zn 65 binding assay revealed two Zn binding domains: one located at a predicted metal binding motif beginning at Cys1175 and the other one close to the cleavage site. Mutagenesis studies showed that Cys1175 and Cys1178 in the first domain and Cys1227 and His1273, the His in the predicted catalytic site, in the second domain are essential for zinc binding. All of these residues are also necessary for the protease activity, as were several other Cys residues not involved in Zn binding. Far-UV circular dichroism (CD) analysis of the MBP-NS protease fusion protein showed that the protease domain contained a large amount of alpha-helical structure, which is consistent with the results of secondary-structural prediction. Both far-UV–CD and fluorescence studies suggested that Zn did not exert a major effect on the overall structure of the fusion protein. Finally, protease inhibitor assays found that the protease activity can be blocked by both metal ion chelators and the metalloprotease inhibitor captopril. In conjunction with the finding that the previously predicted catalytic site, His1273, is essential for zinc binding, this suggests that the RUB NS protease is actually a novel virus metalloprotease rather than a PCP.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3