Functional Analyses of the EBNA1 Origin DNA Binding Protein of Epstein-Barr Virus

Author:

Ceccarelli Derek F. J.1,Frappier Lori2

Affiliation:

1. Department of Biochemistry, McMaster University, Hamilton, Ontario L8N 3Z5,1 and

2. Department of Medical Genetics and Microbiology, University of Toronto, Toronto, Ontario M5S 1A8,2 Canada

Abstract

ABSTRACT The EBNA1 protein of Epstein-Barr virus (EBV) governs the replication and segregation of the viral episomes in latently infected cells and transactivates the expression of other EBV latency proteins through direct interactions with DNA sequences in the EBV latent origin of replication, oriP . To better understand how EBNA1 controls these processes, we have assessed the contribution of various EBNA1 sequences to its replication, segregation, and transactivation functions. Here we show that EBNA1 residues 325 to 376 are responsible for the transactivation activity of EBNA1. This region coincides with the DNA looping domain previously shown to mediate interactions at a distance between DNA-bound EBNA1 molecules. The same residues mediate DNA segregation but have no apparent role in DNA replication, indicating that the replication and transcription activation activities of EBNA1 are distinct. The acidic C-terminal tail of EBNA1 was not found to contribute to replication, transactivation, or segregation. We have also investigated the functional significance of two structural motifs within the DNA binding and dimerization domains of EBNA1, the proline loop and the WF motif. Although the amino acids in these motifs do not directly contact the DNA, both of these motifs were found to contribute to EBNA1 functions by increasing the DNA-binding ability of EBNA1. Mechanisms by which DNA binding is stimulated by these motifs are discussed.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Reference53 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3