Affiliation:
1. Departments of Anatomy 1 and
2. Neuroscience Program, 3 University of California, San Francisco, San Francisco, California 94143
3. Ophthalmology 2 and the
Abstract
An animal model has been developed to clarify the mechanism for spread of herpes simplex virus (HSV) from neuron to epithelial cells in herpetic epithelial keratitis. HSV was introduced into the murine trigeminal ganglion via stereotaxic guided injection. After 2 to 5 days, the animals were euthanized. Ganglia and corneas were prepared for light and electron microscopic immunocytochemistry with antisera to HSV. At 2 days, labeled axons were identified in the stromal layer. At 3 days, we could detect immunoreactive profiles of trigeminal ganglion cell axons that contained many vesicular structures. By 3 and 4 days, the infection had spread to all layers of epithelium, and the center of a region of infected epithelium appeared thinned. At 5 day, fewer basal cells appeared infected, although infection persisted in superficial cells where it had expanded laterally. Mature HSV was found in the extracellular space surrounding wing and squamous cells. Viral antigen was expressed in small pits along the apical surfaces of wing and squamous cells but not at the basal surface of these cells or on basal cells. This polarized expression of viral antigen resulted in the spread of HSV to superficial cells and limited lateral spread to neighboring basal cells. The pathogenesis of HSV infection in these mice may serve as a model of the human recurrent epithelial disease in the progression of focal sites of infection and transfer from basal to superficial cells.
Publisher
American Society for Microbiology
Subject
Virology,Insect Science,Immunology,Microbiology
Cited by
45 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献