Regulation and cloning of the gene encoding amylase activity of the ruminal bacterium Streptococcus bovis

Author:

Cotta M A1,Whitehead T R1

Affiliation:

1. Fermentation Biochemistry Unit, U.S. Department of Agriculture, Peoria, Illinois 61604.

Abstract

Streptococcus bovis is an important starch-degrading ruminal bacterium that has been implicated as being important in the etiology of a number of ruminal pathologies associated with diets high in grains. Previous studies with S. bovis have shown that amylase production was influenced by the growth substrate, but the nature of this regulation was not determined. The current study was conducted to better describe the regulatory phenomena and gain a better understanding of the molecular characteristics of this activity. Nutritional experiments demonstrated that the presence of starch or the starch-derived disaccharide maltose was required for maximum amylase production. Subsequent time-course experiments showed that amylase synthesis was induced by maltose and repressed by glucose, cellobiose, and fructose, while inulin and lactose had little effect on enzyme accumulation. The effects of the added antibiotics rifampin and tetracycline were consistent with transcriptional control of amylase synthesis. Analysis of S. bovis cells grown on glucose or maltose showed that they contained similar low levels of cyclic AMP, indicating that it was unlikely that regulation of amylase synthesis was mediated through a mechanism involving this nucleotide. The amylase gene from S. bovis JB1 was cloned and expressed in Escherichia coli. The amylase produced in E. coli was of lower molecular weight than that synthesized by S. bovis and had catalytic characteristics different from those of S. bovis amylase. When the gene was introduced back into S. bovis JB1, only one form of amylase activity was detected, indicating that the entire gene was present on this insert. The use of the amylase gene as a genetic probe for identification of S. bovis strains is discussed.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3