Extraction and partial characterization of a leukotoxin from a plaque-derived Gram-negative microorganism

Author:

Tsai C C,McArthur W P,Baehni P C,Hammond B F,Taichman N S

Abstract

The plaque-derived gram-negative microorganism Y4 identified as a member of the genus Actinobacillus, was tested for a soluble cytotoxic factor(s). Sonication or incubation of viable Y4 microorganisms in distilled water or normal human serum resulted in liberation of a soluble material which was cytotoxic in vitro for human polymorphonuclear leukocytes (PMNs). The Y4 soluble sonic extract was also cytotoxic to human peripheral blood monocytes. However, human lymphocytes, platelets, and fibroblasts, as well as rabbit, rat, and mouse leukocytes and chicken embryo fibroblasts, were not killed by exposure to the Y4 sonic extract. No hemolytic activity was detected in the Y4 sonic extract. No hemolytic activity was detected in the Y4 sonic extract. Consequently, the factor(s) in the Y4 sonic extract was referred to as Y4 leukotoxin. The Y4 leukotoxin was inactive at 4 degrees C, heat sensitive (56 degrees C, 30 min), and inactivated by proteases. The cytotoxic effect of Y4 leukotoxin on PMNs was dose, time, and temperature dependent. The leukotoxin did not bind to viable PMNs at 4 degrees C but did bind to dead PMN membrane components at both 4 and 37 degrees C. The addition of bovine serum albumin (51 mg/ml) to PMN-Y4 leukotoxin cultures inhibited the release of lactate dehydrogenase from the PMNs, but did not prevent the death of the cells as indicated by electron microscopy. Lysosomal markers were released in parallel to the cytoplasmic enzyme lactate dehydrogenase from Y4 leukotoxin-treated PMNs. The addition of 0.02 M ethylenedinitrilotetraacetic acid to these cultures inhibited release of lysosomal markers but enhanced the release of lactate dehydrogenase. These results suggested that a soluble leukotoxin with specificity for only human PMNs and monocytes can be liberated from viable Y4. What role this leukotoxin plays in the pathogenicity of the Y4 microorganism is not yet known. However, this leukotoxin is one of the first materials from a plaque-derived microorganism with a potential role in the pathogenesis of juvenile periodontitis.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Reference35 articles.

1. Interaction of inflammatory cells and oral microorganisms. VIII. Detection of leukotoxic activity of a plaque-derived gramnegative microorganism;Baehni P.;Infect. Immun.,1979

2. Interaction of inflammatory cells and oral microorganisms. V. Electron microscopic and biochemical study on the mechanisms of release of Iysosomal constituents from human polymorphonuclear leukocytes exposed to dental plaque;Baehni P.;J. Periodontal Res.,1978

3. The case for periodontosis as a clinical entity;Baer P.;J. Periodontol.,1971

4. Defective polymorphonuclear leukocyte function in a human periodontal disease;Ciancola L. J.;Nature (London),1977

5. Defective neutrophil chemotaxis in juvenile periodontitis;Clark R. A.;Infect. Immun.,1977

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3