Towards an Understanding of the Mechanism of Pyrimethamine-Sulfadoxine Resistance in Plasmodium falciparum : Genotyping of Dihydrofolate Reductase and Dihydropteroate Synthase of Kenyan Parasites

Author:

Nzila A. M.12,Mberu E. K.13,Sulo J.4,Dayo H.4,Winstanley P. A.2,Sibley C. H.3,Watkins W. M.12

Affiliation:

1. Kenya Medical Research Institute/Wellcome Trust Collaborative Research Program, Wellcome Trust Research Laboratories, Nairobi,1 and

2. Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool L69 3BX, United Kingdom2; and

3. Department of Genetics, University of Washington, Seattle, Washington 98195–73603

4. Center for Geographic Medicine Research, Coast, Kenya Medical Research Institute, Kilifi,4

Abstract

ABSTRACT The antifolate combination of pyrimethamine (PM) and sulfadoxine (SD) is the last affordable drug combination available for wide-scale treatment of falciparum malaria in Africa. Wherever this combination has been used, drug-resistant parasites have been selected rapidly. A study of PM-SD effectiveness carried out between 1997 and 1999 at Kilifi on the Kenyan coast has shown the emergence of RI and RII resistance to PM-SD (residual parasitemia 7 days after treatment) in 39 out of 240 (16.25%) patients. To understand the mechanism that underlies resistance to PM-SD, we have analyzed the dihydrofolate reductase (DHFR) and dihydropteroate synthase (DHPS) genotypes of 81 patients. Fifty-one samples were obtained, before treatment, from patients who remained parasite free for at least 7 days after treatment. For a further 20 patients, samples were obtained before treatment and again when they returned to the clinic with parasites 7 days after PM-SD treatment. Ten additional isolates were obtained from patients who were parasitemic 7 days after treatment but who were not sampled before treatment. More than 65% of the isolates (30 of 46) in the initial group had wild-type or double mutant DHFR alleles, and all but 7 of the 47 (85%) had wild-type DHPS alleles. In the paired (before and after treatment) samples, the predominant combinations of DHFR and DHPS alleles before treatment were of triple mutant DHFR and double mutant DHPS (41% [7 of 17]) and of double mutant DHFR and double mutant DHPS (29% [5 of 17]). All except one of the posttreatment isolates had triple mutations in DHFR, and most of these were “pure” triple mutants. In these isolates, the combination of a triple mutant DHFR and wild-type DHPS was detected in 6 of 29 cases (20.7%), the combination of a triple mutant DHFR and a single mutant (A437G) DHPS was detected in 4 of 29 cases (13.8%), and the combination of a triple mutant DHFR and a double mutant (A437G, L540E) DHPS was detected in 16 of 29 cases (55.2%). These results demonstrate that the triply mutated allele of DHFR with or without mutant DHPS alleles is associated with RI and RII resistance to PM-SD. The prevalence of the triple mutant DHFR-double mutant DHPS combination may be an operationally useful marker for predicting the effectiveness of PM-SD as a new malaria treatment.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3