Expression of the ggpS Gene, Involved in Osmolyte Synthesis in the Marine Cyanobacterium Synechococcus sp. Strain PCC 7002, Revealed Regulatory Differences between This Strain and the Freshwater Strain Synechocystis sp. Strain PCC 6803

Author:

Engelbrecht Friederike1,Marin Kay1,Hagemann Martin1

Affiliation:

1. Fachbereich Biologie, Universität Rostock, D-18051 Rostock, Germany

Abstract

ABSTRACT Synthesis of the osmolyte glucosylglycerol (GG) in the marine cyanobacterium Synechococcus sp. strain PCC 7002 was characterized. The ggpS gene, which encodes the key enzyme (GG-phosphate synthase [GgpS]) in GG biosynthesis, was cloned by using PCR. A 2,030-bp DNA sequence which contained one open reading frame (ORF) was obtained. The protein deduced from this ORF exhibited 85% similarity to the GgpS of the freshwater cyanobacterium Synechocystis sp. strain PCC 6803. The function of the protein was confirmed by generating a ggpS null mutant, which was not able to synthesize GG and thus exhibited a salt-sensitive phenotype. Expression of the ggpS gene was analyzed in salt-shocked cells by performing Northern blot and immunoblot experiments. While almost no expression was detected in cells grown in low-salt medium, immediately after a salt shock the amounts of ggpS mRNA and GgpS protein increased up to 100-fold. The finding that salt-induced expression occurred was confirmed by measuring enzyme activities, which were negligible in control cells but clearly higher in salt-treated Synechococcus sp. cells. The salt-induced increase in GgpS activity could be inhibited by adding chloramphenicol, while in protein extracts of the freshwater cyanobacterium Synechocystis sp. strain PCC 6803 a constitutive, high level of enzyme activity that was not affected by chloramphenicol was found. A comparison of GG accumulation in the two cyanobacteria revealed that in the marine strain osmolyte synthesis seemed to be regulated mainly by transcriptional control, whereas in the freshwater strain control seemed to be predominantly posttranslational.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Reference28 articles.

1. Studies on nitrogen-fixing blue-green algae. II. The sodium requirement of Anabaena cylindrica.;Allen M. B.;Physiol. Plant.,1955

2. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs.;Altschul S. F.;Nucleic Acids Res.,1997

3. A rapid and sensitive method for the quantitation of microgram quantities of protein using the principle of protein-dye binding.;Bradford M. M.;Anal. Biochem.,1976

4. Csonka L. N. Epstein W. Osmoregulation Escherichia coli and Salmonella: cellular and molecular biology. Neidhardt F. C. 1996 1210 1223 ASM Press Washington D.C.

5. Compatible solutes of halophilic eubacteria: molecular principles, water-solute interaction, stress protection.;Galinski E. A.;Experientia,1993

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3