Microbial Desulfurization of Alkylated Dibenzothiophenes from a Hydrodesulfurized Middle Distillate by Rhodococcus erythropolis I-19

Author:

Folsom B. R.1,Schieche D. R.1,DiGrazia P. M.1,Werner J.1,Palmer S.1

Affiliation:

1. Energy Biosystems Corp., The Woodlands, Texas 77381

Abstract

ABSTRACT Rhodococcus erythropolis I-19, containing multiple copies of key dsz genes, was used to desulfurize alkylated dibenzothiophenes (Cx-DBTs) found in a hydrodesulfurized middle-distillate petroleum (MD 1850). Initial desulfurization rates of dibenzothiophene (DBT) and MD 1850 by I-19 were 5.0 and 2.5 μmol g dry cell weight −1 min −1 , more than 25-fold higher than that for wild-type bacteria. According to sulfur K-edge X-ray absorption near-edge structure (XANES) analysis, thiophenic compounds accounted for >95% of the total sulfur found in MD 1850, predominantly Cx-DBTs and alkylated benzothiophenes. Extensive biodesulfurization resulted in a 67% reduction of total sulfur from 1,850 to 615 ppm S. XANES analysis of the 615-ppm material gave a sulfur distribution of 75% thiophenes, 11% sulfides, 2% sulfoxides, and 12% sulfones. I-19 preferentially desulfurized DBT and C1-DBTs, followed by the more highly alkylated Cx-DBTs. Shifting zero- to first-order (first-order) desulfurization rate kinetics were observed when MD 1850 was diluted with hexadecane. Apparent saturation rate constant ( K 0 ) and half-saturation rate constant ( K 1 ) values were calculated to be 2.8 μmol g dry cell weight −1 min −1 and 130 ppm, respectively. However, partial biocatalytic reduction of MD 1850 sulfur concentration followed by determination of initial rates with fresh biocatalyst led to a sigmoidal kinetic behavior. A competitive-substrate model suggested that the apparent K 1 values for each group of Cx-DBTs increased with increasing alkylation. Overall desulfurization rate kinetics with I-19 were affected by the concentration and distribution of Cx-DBTs according to the number and/or lengths of alkyl groups attached to the basic ring structure.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Cited by 120 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3