Induction and Transcription Studies of the Dextransucrase Gene in Leuconostoc mesenteroides NRRL B-512F

Author:

Quirasco M.1,López-Munguía A.2,Remaud-Simeon M.3,Monsan P.3,Farrés A.1

Affiliation:

1. Departamento de Alimentos y Biotecnologı́a, Facultad de Quı́mica, Universidad Nacional Autónoma de México, Mexico City, 04510 Federal District,1 and

2. Instituto de Biotecnologı́a, Universidad Nacional Autónoma de México, 62250 Cuernavaca, Morelos,2Mexico, and

3. Centre de Bioingénierie Gilbert Durand, Institut National des Sciences Appliquées, 31 077 Toulouse Cedex, France3

Abstract

ABSTRACT Dextransucrase production by Leuconostoc mesenteroides NRRL B-512F in media containing carbon sources other than sucrose is reported for the first time. Dextransucrases were analyzed by gel electrophoresis and by an in situ activity assay. Their polymers and acceptor reaction products were also compared by 13 C nuclear magnetic resonance and high-performance liquid chromatography techniques, respectively. From these analyses, it was found that, independently of the carbon source, L. mesenteroides NRRL B-512F produced dextransucrases of the same size and product specificity. The 5′ ends of dextransucrase mRNAs isolated from cells grown under different culture conditions were identical. Based on this evidence, we conclude that dextransucrases obtained from cells grown on the various carbon sources result from the transcription of the same gene. The control of expression occurs at this level. The low dextransucrase yields from cultures in d -glucose or d -fructose and the enhancement of dextransucrase gene transcription in the presence of sucrose suggest that an activating phenomenon may be involved in the expression mechanism. Dextransucrase mRNA has a size of approximately 4.8 kb, indicating that the gene is located in a monocistronic operon. The transcription start point was localized 34 bp upstream from the ATG start codon. The −10 and −35 sequences found, TATAAT and TTTACA, were highly homologous to the only glycosyltransferase promoter sequence reported for lactic acid bacteria.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3