Population Dynamics of Chesapeake Bay Virioplankton: Total-Community Analysis by Pulsed-Field Gel Electrophoresis

Author:

Wommack K. Eric1,Ravel Jacques1,Hill Russell T.12,Chun Jongsik1,Colwell Rita R.1

Affiliation:

1. Center of Marine Biotechnology, University of Maryland Biotechnology Institute, Baltimore, Maryland 21202,1 and

2. Australian Institute of Marine Science, Townsville, MC 4810 Queensland, Australia2

Abstract

ABSTRACT Recognition of viruses as the most abundant component of aquatic microbial communities has stimulated investigations of the impact of viruses on bacterio- and phytoplankton host communities. From results of field studies to date, it is concluded that in most aquatic environments, a reduction in the number of bacteria on a daily basis is caused by viral infection. However, the modest amount of in situ virus-mediated mortality may be less significant than viral infection serving to maintain clonal diversity in the host communities directly, through gene transmission (i.e., transduction), and indirectly, by elimination of numerically dominant host species. If the latter mechanism for controlling community diversity prevails, then the overall structure of aquatic viral communities would be expected to change as well over short seasonal and spatial scales. To determine whether this occurs, pulsed-field gel electrophoresis (PFGE) was used to monitor the population dynamics of Chesapeake Bay virioplankton for an annual cycle (1 year). Virioplankton in water samples collected at six stations along a transect running the length of the bay were concentrated 100-fold by ultrafiltration. Viruses were further concentrated by ultracentrifugation, and the concentrated samples were embedded in agarose. PFGE analysis of virus DNA in the agarose plugs yielded several distinct bands, ranging from 50 to 300 kb. Principal-component and cluster analyses of the virus PFGE fingerprints indicated that changes in virioplankton community structure were correlated with time, geographical location, and extent of water column stratification. From the results of this study, it is concluded that, based on the dynamic nature of the Chesapeake Bay virioplankton community structure, the clonal diversity of bacterio- and phytoplankton host communities is an important component of the virus community.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Reference50 articles.

1. Ackermann H. W. DuBow M. S. Viruses of prokaryotes: natural groups of bacteriophages. 1987 CRC Press Inc. Boca Raton Fla

2. The species concept and its application to tailed phages.;Ackermann H. W.;Arch. Virol.,1992

3. High abundance of viruses found in aquatic environments.;Bergh O.;Nature,1989

4. Comparison of free-living and particle-associated bacterial communities in the chesapeake bay by stable low-molecular-weight RNA analysis

5. Native marine bacteriophages.;Børsheim K. Y.;FEMS Microbiol. Ecol.,1993

Cited by 142 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3